【題目】已知a=b,則下列等式不成立的是( 。
A.a+1=b+1B.1﹣a=1﹣bC.3a=3bD.2﹣3a=3b﹣2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( 。
A. 4 B. 6 C. 3 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長都是,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形.
()畫一個(gè)三角形,使它的三邊長都是有理數(shù).
()畫一個(gè)直角三角形,使它們的三邊長都是無理數(shù).
()畫出與成軸對稱且與有公共點(diǎn)的格點(diǎn)三角形(畫出一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中, ,垂足為點(diǎn), ,垂足為點(diǎn), 為邊的中點(diǎn),連結(jié)、、.
()猜想的形狀,并說明理由.
()若, ,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝(約13世紀(jì))所著的《詳解九章算術(shù)》一書中,用如圖的三角形解釋二項(xiàng)式乘方(a+b)n的展開式的各項(xiàng)系數(shù),此三角形稱為“楊輝三角”.
根據(jù)“楊輝三角”請計(jì)算(a+b)64的展開式中第三項(xiàng)的系數(shù)為( )
A. 2016 B. 2017 C. 2018 D. 2019
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(3,8),該二次函數(shù)圖象的對稱軸與x軸的交點(diǎn)為A,M是這個(gè)二次函數(shù)圖象上的點(diǎn),O是原點(diǎn).
(1)不等式b+2c+8≥0是否成立?請說明理由;
(2)設(shè)S是△AMO的面積,求滿足S=9的所有點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列是胡老師帶領(lǐng)學(xué)生,探究SSA是否能判定兩個(gè)三角形全等的過程,填空.
如圖:已知CD=CB,
在△ABC和△ADC中,
AC=_____,(公共邊)
CB=CD,(已知)
∠A=∠A,(_______)
則△ABC和△ADC滿足兩邊及一邊的對角分別相等,即滿足_____,
很顯然:△ABC_____△ADC,(填“全等于”或“不全等于”)
下結(jié)論:SSA_____(填“能”或“不能”)判定兩個(gè)三角形全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,舉行抽獎活動,并規(guī)定:顧客每購買100元的商品,就可以隨機(jī)抽取一張獎券,抽得獎券“紫氣東來”、“化開富貴”、“吉星高照”,就可以分別獲得100元、50元、20元的購物券,抽得“謝謝惠顧”不贈購物券;如果顧客不愿意抽獎,可以直接獲得購物券10元,小明購買了100元的商品,他看到商場公布的前10000張獎券的抽獎結(jié)果如下:
獎券種類 | 紫氣東來 | 化開富貴 | 吉星高照 | 謝謝惠顧 |
出現(xiàn)張數(shù)(張) | 500 | 1000 | 2000 | 6500 |
(1)求“紫氣東來”獎券出現(xiàn)的頻率;
(2)請你幫助小明判斷,抽獎和直接獲得購物券,哪種方式更合算?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com