【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC繞邊AB所在直線旋轉(zhuǎn)一周,則所得幾何體的表面積為 (結(jié)果保留π).

【答案】8π
【解析】解:過點(diǎn)C作CD⊥AB于點(diǎn)D,
Rt△ABC中,∠ACB=90°,AC=BC,
∴AB=AC=4,
∴CD=2,
以CD為半徑的圓的周長是:4π.
故直線旋轉(zhuǎn)一周則所得的幾何體得表面積是:2××4π×2=8π.
所以答案是:8π.

【考點(diǎn)精析】利用點(diǎn)、線、面、體的認(rèn)識和圓錐的相關(guān)計算對題目進(jìn)行判斷即可得到答案,需要熟知點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形;線:面和面相交的地方是線,分為直線和曲線;面:包圍著體的是面,分為平面和曲面;體:幾何體也簡稱體;圓錐側(cè)面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側(cè)面積S=πrl;V圓錐=1/3πR2h.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的弦,CD是⊙O的直徑,CD⊥AB,垂足為E,且點(diǎn)E是OD的中點(diǎn),⊙O的切線BM與AO的延長線相交于點(diǎn)M,連接AC,CM.

(1)若AB=4,求的長;(結(jié)果保留π)
(2)求證:四邊形ABMC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),拋物線y1=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(x1 , 0),B(x2 , 0),與y軸交于點(diǎn)C,且O,C兩點(diǎn)間的距離為3,x1x2<0,|x1|+|x2|=4,點(diǎn)A,C在直線y2=﹣3x+t上.
(1)求點(diǎn)C的坐標(biāo)
(2)當(dāng)y1隨著x的增大而增大時,求自變量x的取值范圍;
(3)將拋物線y1向左平移n(n>0)個單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個單位,當(dāng)平移后的直線與P有公共點(diǎn)時,求2n2﹣5n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(1)(π﹣3)0+﹣2cos45°﹣
(2)若x+=3,求的值.
(1)(π﹣3)0+﹣2cos45°﹣
(2)若x+=3,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(a+1,﹣+1)關(guān)于原點(diǎn)對稱的點(diǎn)在第四象限,則a的取值范圍在數(shù)軸上表示正確的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在的青少年由于沉迷電視、手機(jī)、網(wǎng)絡(luò)游戲等,視力日漸減退,某市為了解學(xué)生的視力變化情況,從全市九年級隨機(jī)抽取了1500名學(xué)生,統(tǒng)計了每個人連續(xù)三年視力檢查的結(jié)果,根據(jù)視力在4.9以下的人數(shù)變化制成折線統(tǒng)計圖,并對視力下降的主要因素進(jìn)行調(diào)查,制成扇形統(tǒng)計圖.

解答下列問題:
(1)圖中D所在扇形的圓心角度數(shù)為
(2)若2015年全市共有30000名九年級學(xué)生,請你估計視力在4.9以下的學(xué)生約有多少名?
(3)根據(jù)扇形統(tǒng)計圖信息,你覺得中學(xué)生應(yīng)該如何保護(hù)視力?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,點(diǎn)C在y軸的正半軸上,且OA=OC,則(  )

A.ac+1=b
B.ab+1=c
C.bc+1=a
D.以上都不是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列交通標(biāo)志中,是中心對稱圖形的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,三角形的三個頂點(diǎn)均落在格點(diǎn)上.

(1)以三角形的其中兩邊為邊畫一個平行四邊形,并在頂點(diǎn)處標(biāo)上字母A,B,C,D
(2)證明四邊形ABCD是平行四邊形

查看答案和解析>>

同步練習(xí)冊答案