(2013•涉縣模擬)如圖,已知二次函數(shù)y=-
1
4
x2+
3
2
x+4的圖象與y軸交于點(diǎn)A,與x軸交于B、C兩點(diǎn),其對(duì)稱(chēng)軸與x軸交于點(diǎn)D,連接AC.
(1)點(diǎn)A的坐標(biāo)為
(0,4)
(0,4)
,點(diǎn)C的坐標(biāo)為
(8,0)
(8,0)
;
(2)△ABC是直角三角形嗎?若是,請(qǐng)給予證明;
(3)線段AC上是否存在點(diǎn)E,使得△EDC為等腰三角形?若存在,求出所有符合條件的點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)拋物線的解析式中,令x=0即得二次函數(shù)與y軸交點(diǎn)A的縱坐標(biāo),令y=0即得二次函數(shù)與x軸交點(diǎn)的橫坐標(biāo).
(2)根據(jù)(1)中點(diǎn)的坐標(biāo)得出AB,BC,AC的長(zhǎng),進(jìn)而利用勾股定理逆定理得出即可;
(3)根據(jù)A、C的坐標(biāo),易求得直線AC的解析式,由于等腰△EDC的腰和底不確定,因此要分成三種情況討論:
①CD=DE,由于OD=3,DA=DC=5,此時(shí)A點(diǎn)符合E點(diǎn)的要求,即此時(shí)A、E重合;
②CE=DE,根據(jù)等腰三角形三線合一的性質(zhì)知:E點(diǎn)橫坐標(biāo)為點(diǎn)D的橫坐標(biāo)加上CD的一半,然后將其代入直線AC的解析式中,即可得到點(diǎn)E的坐標(biāo);
③CD=CE,此時(shí)CE=5,過(guò)E作EG⊥x軸于G,已求得CE、CA的長(zhǎng),即可通過(guò)相似三角形(△CEG∽△CAO)所得比例線段求得EG、CG的長(zhǎng),從而得到點(diǎn)E的坐標(biāo).
解答:解:(1)在二次函數(shù)中令x=0得y=4,
∴點(diǎn)A的坐標(biāo)為(0,4),
令y=0得:-
1
4
x2+
3
2
x+4=0
,
即:x2-6x-16=0,
∴x=-2和x=8,
∴點(diǎn)B的坐標(biāo)為(-2,0),點(diǎn)C的坐標(biāo)為(8,0).
故答案為:A(0,4),C(8,0);

(2)∵點(diǎn)A的坐標(biāo)為(0,4),
∴AO=4,
∵點(diǎn)B的坐標(biāo)為(-2,0),點(diǎn)C的坐標(biāo)為(8,0),
∴BO=2,CO=8,∴BC=10,
∴AC=
42+82
=4
5

∴AB=
22+42
=2
5
,
∴AB2+AC2=100,
∵BC2=100,
∴AB2+AC2=BC2,
∴△ABC是直角三角形;

(3)易得D(3,0),CD=5,
設(shè)直線AC對(duì)應(yīng)的函數(shù)關(guān)系式為y=kx+b,則:
b=4
8k+b=0
,
解得
k=-
1
2
b=4

∴y=-
1
2
x+4;
①當(dāng)DE=DC時(shí),
∵CD=5,
∴AD=5,
∵D(3,0),
∴OE=
52-32
=4,
∴E1(0,4);
②當(dāng)DE=EC時(shí),可得出E點(diǎn)在CD的垂直平分線上,可得出E點(diǎn)橫坐標(biāo)為:3+
5
2
=
11
2

進(jìn)而將x=
11
2
代入y=-
1
2
x+4,得出y=
5
4

可得E2
11
2
,
5
4
);
③當(dāng)DC=EC時(shí),如圖,過(guò)點(diǎn)E作EG⊥CD,
則△CEG∽△CAO,
EG
OA
=
CG
OC
=
CE
AC

即EG=
5
,CG=2
5
,
∴E3(8-2
5
,
5
);
綜上所述,符合條件的E點(diǎn)共有三個(gè):E1(0,4)、E2
11
2
,
5
4
)、E3(8-2
5
5
).
點(diǎn)評(píng):此題考查了二次函數(shù)圖象與坐標(biāo)軸交點(diǎn)坐標(biāo)的求法、等腰三角形的構(gòu)成條件、圖形面積的求法等知識(shí),(3)題的解題過(guò)程并不復(fù)雜,關(guān)鍵在于理解題意.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•涉縣模擬)下列計(jì)算結(jié)果為負(fù)數(shù)的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•涉縣模擬)已知y=x+1,則(y-x)2+(x-y)-1的值為
-1
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•涉縣模擬)如圖,在矩形ABCD,AB=10cm,BC=5cm.點(diǎn)E、F分別在AB、CD上,將矩形ABCD沿EF折疊,使點(diǎn)A、D分別落在矩形ABCD外部的點(diǎn)A′、D′處,則整個(gè)陰影部分圖形的周長(zhǎng)為
30cm
30cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•涉縣模擬)理論探究:已知平行四邊形ABCD的面積為100,M是AB所在直線上一點(diǎn).
(1)如圖1:當(dāng)點(diǎn)M與B重合時(shí),S△DCM=
50
50

(2)如圖2,當(dāng)點(diǎn)M與B與A均不重合時(shí),S△DCM=
50
50
;
(3)如圖3,當(dāng)點(diǎn)M在AB(或BA)的延長(zhǎng)線上時(shí),S△DCM=
50
50
;

拓展推廣:如圖4,平行四邊形ABCD的面積為a,E、F分別為DC、BC延長(zhǎng)線上兩點(diǎn),連接DF、AF、AE、BE,求出圖中陰影部分的面積,并說(shuō)明理由.

實(shí)踐應(yīng)用:如圖5是我市某廣場(chǎng)的一平行四邊形綠地ABCD,PQ、MN分別平行于DC、AD,它們相交于點(diǎn)O,其中S四邊形AMOP=300m2,S四邊形MBQO=400m2,S四邊形NCQO=700m2,現(xiàn)進(jìn)行綠地改造,在綠地內(nèi)部作一個(gè)三角形區(qū)域MQD(連接DM、QD、QM,圖中陰影部分)種植不同的花草,求出三角形區(qū)域的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案