(2009•綦江縣)如圖,AB與⊙O相切于點(diǎn)B,AO的延長(zhǎng)線交⊙O于點(diǎn)C,連接BC.若∠A=36°,則∠C=    度.
【答案】分析:連接根據(jù)三角形的內(nèi)角和定理就得到關(guān)于∠C的方程,從而求出.
解答:解:設(shè)AC與⊙O的另一交點(diǎn)為D,連接BD,
則∠DBC=90°,
設(shè)∠C=x,
則∠ABD=x,∠BDC=∠A+∠DBA=36°+x;
∵∠CDB+∠C=90°,
∴36°+x+x=90°,
解得x=27°.
點(diǎn)評(píng):考查圓的切線及圓周角、三角形外角等性質(zhì),運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線構(gòu)造直徑所對(duì)的圓周角,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷34(義蓬二中 戎曉軍)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長(zhǎng)度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長(zhǎng)度單位和2個(gè)長(zhǎng)度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最。坎⑶蟪鲎钚≈导按藭r(shí)PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(31)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長(zhǎng)度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長(zhǎng)度單位和2個(gè)長(zhǎng)度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最?并求出最小值及此時(shí)PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷48(新灣初中 洪凱)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長(zhǎng)度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長(zhǎng)度單位和2個(gè)長(zhǎng)度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最?并求出最小值及此時(shí)PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年新人教版中考數(shù)學(xué)模擬試卷(10)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長(zhǎng)度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長(zhǎng)度單位和2個(gè)長(zhǎng)度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最。坎⑶蟪鲎钚≈导按藭r(shí)PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市浠水縣余堰中學(xué)九年級(jí)數(shù)學(xué)月考試卷(二)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長(zhǎng)度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長(zhǎng)度單位和2個(gè)長(zhǎng)度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最?并求出最小值及此時(shí)PQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案