【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點(diǎn)D,交BC于點(diǎn)E.
(1)求證:BE=CE;
(2)若BD=2,BE=3,求AC的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)9.
【解析】
試題分析:(1)連結(jié)AE,如圖,根據(jù)圓周角定理,由AC為⊙O的直徑得到∠AEC=90°,然后利用等腰三角形的性質(zhì)即可得到BE=CE;
(2)連結(jié)DE,如圖,證明△BED∽△BAC,然后利用相似比可計(jì)算出AB的長(zhǎng),從而得到AC的長(zhǎng).
(1)證明:連結(jié)AE,如圖,
∵AC為⊙O的直徑,
∴∠AEC=90°,
∴AE⊥BC,
而AB=AC,
∴BE=CE;
(2)連結(jié)DE,如圖,
∵BE=CE=3,
∴BC=6,
∵∠BED=∠BAC,
而∠DBE=∠CBA,
∴△BED∽△BAC,
∴=,即=,
∴BA=9,
∴AC=BA=9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題的個(gè)數(shù)是( )
①同位角相等;②a,b,c是三條直線,若a⊥b,b⊥c,則a⊥c;③a,b,c是三條直線,若a∥b,b∥c,則a∥c;④過(guò)一點(diǎn)有且只有一條直線與已知直線平行.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,點(diǎn)B,D在射線AM上,點(diǎn)C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數(shù);
(2)如圖2,點(diǎn)B、F、D在射線AM上,點(diǎn)G、C、E在射線AN上,且AB=BC=CD=DE=EF=FG=GA,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年12月26日,南昌地鐵一號(hào)線正式開(kāi)通試運(yùn)營(yíng).據(jù)統(tǒng)計(jì),開(kāi)通首日全天客流量累積近25萬(wàn)人次,數(shù)據(jù)25萬(wàn)可用科學(xué)記數(shù)法表示為( )
A.0.25×105 B.2.5×104 C.25×104 D.2.5×105
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知ABCD的一組鄰邊AB、AD的長(zhǎng)是關(guān)于x的方程x2﹣4x+m=0的兩個(gè)實(shí)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?
(2)在第(1)問(wèn)的前提下,若∠ABC=60°,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=k1x+b與反比例函數(shù)y=(x>0)的圖象交于A(1,6),B(a,3)兩點(diǎn).
(1)求k1和k2的值;
(2)結(jié)合圖象直接寫(xiě)出k1x+b﹣>0的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某校七年級(jí)男生的體能情況,從該校七年級(jí)抽取50名男生進(jìn)行1分鐘跳繩測(cè)試,把所得數(shù)據(jù)整理后,畫(huà)出頻數(shù)分布直方圖.已知圖中從左到右第一、第二、第三、第四小組的頻數(shù)的比為1:3:4:2.
(1)總體是 ,個(gè)體是 ,樣本容量是 ;
(2)求第四小組的頻數(shù)和頻率;
(3)求所抽取的50名男生中,1分鐘跳繩次數(shù)在100次以上(含100次)的人數(shù)占所抽取的男生人數(shù)的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知|x-3|和(y-2)2 互為相反數(shù),先化簡(jiǎn),并求值(x-2y)2 -(x-y)(x+y)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com