如圖8,已知△ABC,AB=AC,以邊AB為直徑的⊙O交BC于點D,交AC于點E,連接DE.
(1)求證:DE=DC.
(2)如圖9,連接OE,將∠EDC繞點D逆時針旋轉(zhuǎn),使∠EDC的兩邊分別交OE的延長線于點F,AC的延長線于點G.試探究線段DF、DG的數(shù)量關系.
(1)證明:∵四邊形ABDE內(nèi)接于⊙O,
∴∠B+∠AED =180°
∵∠DEC+∠AED =180°
∴∠DEC =∠B
∵AB=AC
∴∠C =∠B
∴∠DEC =∠C
∴DE=DC
(2)證明:∵四邊形ABDE內(nèi)接于⊙O,
∴ ∠A+∠BDE =180°
∵∠EDC+∠BDE =180°
∴∠A=∠EDC
∵OA="OE"
∴∠A=∠OEA
∵∠OEA=∠CEF
∴∠A=∠CEF
∴∠EDC=∠CEF
∵∠EDC+∠DEC+∠DCE =180°
∴∠CEF+∠DEC+∠DCE =180°
即∠DEF +∠DCE =180°
又∵∠DCG +∠DCE =180°
∴∠DEF=∠DCG
∵∠EDC旋轉(zhuǎn)得到∠FDG
∴∠EDC=∠FDG
∴∠EDC -∠FDC =∠FDG -∠FDC
即∠EDF=∠CDG
∵DE=DC
∴△EDF ≌ △CDG(ASA)
∴DF="DG"
(1)根據(jù)圓內(nèi)接四邊形的性質(zhì)即等腰三角形的性質(zhì)即可得到結果;
(2)根據(jù)圓內(nèi)接四邊形的性質(zhì)、等腰三角形的性質(zhì)、三角形的內(nèi)角和定理、全等三角形的判定及性質(zhì)即可得到結果;
練習冊系列答案
相關習題
科目:初中數(shù)學
來源:不詳
題型:填空題
已知:如圖,矩形ABCD的長和寬分別為2和1,以D為圓心, AD為半徑作AE弧,再以AB的中點F為圓心,F(xiàn)B長為半徑作BE弧,則陰影部分的面積為
.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖,△ABC內(nèi)接于⊙O,AB、CD為⊙O直徑,DE⊥AB于點E,sinA=
,則∠D的度數(shù)是
.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
如圖,等邊△ABC的周長為6π,半徑是1的⊙O從與AB相切于點D的位置
出發(fā),在△ABC外部按順時針方向沿三角形滾動,又回到與AB相切于點D的位置,則⊙O自轉(zhuǎn)了:【 】
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖:已知AB是⊙O的直徑,BC是⊙O的切線,OC與⊙O相交于點D,連結AD并延長,與BC相交于點E。
(1)若BC=
,CD=1,求⊙O的半徑;
(2)取BE的中點F,連結DF,求證:DF是⊙O的切線
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
已知⊙O
1和⊙O
2的半徑分別為2和5,圓心距O
lO
2=3,則這兩圓的位置關系是( 。
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
現(xiàn)有一圓心角是90°,半徑是8cm的扇形紙片,用它恰好圍成一個圓錐的側面(接縫忽略不記),則該圓錐底面圓的半徑為 ( )
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
如果⊙O
1和⊙O
2的半徑分別為3㎝和1㎝,且O
1O
2=2㎝.則⊙O
1和⊙O
2的位置關系是
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖,已知O的半徑OA=2,C為半徑OB的中點,若∠AOB=90°,則圖中陰影部分的面積為
查看答案和解析>>