已知拋物線y=ax2+2x+c的圖象與x軸交于點A(3,0)和點C,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上找一點D,使得點D到點B、C的距離之和最小,并求出點D的坐標(biāo);
(3)在第一象限的拋物線上,是否存在一點P,使得△ABP的面積最大?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)利用待定系數(shù)法求出拋物線的解析式;
(2)連接AB,與對稱軸x=1的交點即為所求之D點.為求D點坐標(biāo),需先求出直線AB的解析式,然后令x=1求得y,即可求出D點坐標(biāo);
(3)本問關(guān)鍵是求出△ABP的面積表達(dá)式.這個表達(dá)式是一個關(guān)于P點橫坐標(biāo)的二次函數(shù),利用二次函數(shù)求極值的方法可以確定P點的坐標(biāo).
解答:解:(1)∵拋物線y=ax2+2x+c的圖象經(jīng)過點A(3,0)和點B(0,3),
,解得a=-1,c=3,
∴拋物線的解析式為:y=-x2+2x+3.

(2)對稱軸為x==1,
令y=-x2+2x+3=0,解得x1=3,x2=-1,∴C(-1,0).
如圖1所示,連接AB,與對稱軸x=1的交點即為所求之D點,由于A、C兩點關(guān)于對稱軸對稱,則此時DB+DC=DB+DA=AB最。
設(shè)直線AB的解析式為y=kx+b,由A(3,0)、B(0,3)可得:
,解得k=-1,b=3,
∴直線AB解析式為y=-x+3.
當(dāng)x=1時,y=2,∴D點坐標(biāo)為(1,2).

(3)結(jié)論:存在.
如圖2所示,設(shè)P(x,y)是第一象限的拋物線上一點,
過點P作PN⊥x軸于點N,則ON=x,PN=y,AN=OA-ON=3-x.
S△ABP=S梯形PNOB+S△PNA-S△AOB
=(OB+PN)•ON+PN•AN-OA•OB
=(3+y)•x+y•(3-x)-×3×3
=(x+y)-
∵P(x,y)在拋物線上,∴y=-x2+2x+3,代入上式得:
S△ABP=(x+y)-=-(x2-3x)=-(x-2+,
∴當(dāng)x=時,S△ABP取得最大值.
當(dāng)x=時,y=-x2+2x+3=,∴P(,).
所以,在第一象限的拋物線上,存在一點P,使得△ABP的面積最大;P點的坐標(biāo)為(,).
點評:本題綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法求函數(shù)(二次函數(shù)和一次函數(shù))的解析式、利用軸對稱性質(zhì)確定線段的最小長度、圖形面積的表示方法等重要知識點,難度不是很大.注意第(3)問中圖形面積的表示方法-并非直接用底乘以高,而是通過其他圖形組合轉(zhuǎn)化而來-這是壓軸題中常見的技巧,需要認(rèn)真掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標(biāo)和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標(biāo)為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標(biāo)原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當(dāng)x≥1時y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案