如圖是規(guī)格為8×8的正方形網格,請在所給網格中按下列要求操作:
(1)請在網格中建立平面直角坐標系,使A點坐標為(-2,4),B點坐標為(-4,2);
(2)在第二象限內的格點上畫一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),則C點坐標是______,△ABC的周長是______
【答案】分析:根據A點的坐標,首先確定坐標系的位置,在第二象限內的格點上畫一點C,使點C與線段AB組成一個以AB為底的等腰三角形,則C一定在AB的中垂線上,通過作圖即可確定C的位置,根據勾股定理即可求得三角形的周長,根據對角線的關系即可判定四邊形的形狀.本
解答:解:(1)圖形如右.

(2)圖見上,C(-1,1),△ABC的周長是2+2

(3)由旋轉180°可知,BC=CB′,AC=CA′,
∴四邊形ABA′B′是平行四邊形,
又∵AA′=BB′,
∴四邊形ABA′B′是矩形.
點評:本題考查了在格點上找等腰三角形的頂點,旋轉變換作圖,根據旋轉中心畫圖,確定旋轉后的點的坐標時,要抓住“動”與“不動”,看圖是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖是規(guī)格為8×8的正方形網格,請在所給網格中按下列要求操作:
(1)請在網格中建立平面直角坐標系,使A點坐標為(-2,4),B點坐標為(-4,2);
(2)在第二象限內的格點上畫一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),則C點坐標是
 
,△ABC的周長是
 
(結果保留根號);
(3)畫出△ABC以點C為旋轉中心,旋轉180°后的△A′B′C,連接AB′和A′B,試說出四邊形ABA′B′是何特殊四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖是規(guī)格為8×8的正方形網格(網格小正方形的邊長為1),請在所給網格中按下列要求精英家教網操作:
(1)請在網格中建立平面直角坐標系,使A點坐標為(-2,3),B點坐標為(-4,1);
(2)在第二象限內的格點上畫一點C,使點C與線段AB圍成一個直角三角形(不是等腰直角三角形),則C點坐標是
 
,△ABC的面積是
 
;
(3)將(2)中畫出△ABC以點C為旋轉中心,逆時針旋轉90°后得△A′B′C.求經過B、C、B′三點的拋物線的解析式;并判斷拋物線是否經過8×8正方形網格的格點(不包括點B、C、B′),若經過,請你直接寫出點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖是規(guī)格為8×8的正方形網格(小正方形的邊長為1,小正方形的頂點叫格點),請在所給網格中按下列要求操作:
(1)請在網格中建立平面直角坐標系,使A點坐標為(-2,4),B點坐標為(-4,2);
(2)按(1)中的直角坐標系在第二象限內的格點上找點C(C點的橫坐標大于-3),使點C與線段AB組成一個以AB為底的等腰三角形,則C點坐標是
 
,△ABC的面積是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖是規(guī)格為8×8的正方形網格(小正方形的邊長為1,小正方形的頂點叫格點),在網格中建立平面直角坐標系,使A點坐標為(-2,4),B點坐標為(-4,2);在第二象限內的格點上找點C(C點的橫坐標大于-3),使點C與線段AB組成一個以AB為底的等腰三角形,則C點坐標是
(-2,2)或(-1,1)
(-2,2)或(-1,1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖是規(guī)格為8×8的正方形網格,請在網格中按下列要求操作:
(1)在第二象限內的格點上畫一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),并求出腰長;
(2)畫出△ABC繞點C旋轉180°后得到的△A′B′C;連接AB′和A′B,試說明四邊形ABA′B′是矩形.精英家教網

查看答案和解析>>

同步練習冊答案