已知平行于x軸的直線y=a(a≠0)與函數(shù)y=x和函數(shù)y=的圖象分別交于點(diǎn)A和點(diǎn)B,又有定點(diǎn)P(2,0).
(1)若a>0,且tan∠POB=,求線段AB的長(zhǎng);
(2)在過(guò)A,B兩點(diǎn)且頂點(diǎn)在直線y=x上的拋物線中,已知線段AB=,且在它的對(duì)稱軸左邊時(shí),y隨著x的增大而增大,試求出滿足條件的拋物線的解析式;
(3)已知經(jīng)過(guò)A,B,P三點(diǎn)的拋物線,平移后能得到y(tǒng)=x2的圖象,求點(diǎn)P到直線AB的距離.
【答案】分析:(1)設(shè)B點(diǎn)坐標(biāo)為(m,n),利用三角函數(shù)求出m與n的值以及點(diǎn)A的坐標(biāo).
(2)依題意可知拋物線開口向下,設(shè)點(diǎn)A(a,a),B(,a)求出a值.設(shè)二次函數(shù)為y=k(x+把點(diǎn)A代入求得k值以及函數(shù)解析式.
(3)依題意可求出拋物線的對(duì)稱軸為x=+.把點(diǎn)A的坐標(biāo)代入解析式求出a值.
解答:解:(1)設(shè)第一象限內(nèi)的點(diǎn)B(m,n),
則tan∠POB=,
得m=9n,
又點(diǎn)B在函數(shù)y=的圖象上,得n=,
所以m=3(-3舍去),
點(diǎn)B為(3,),
而AB∥x軸,所以點(diǎn)A(),
所以AB=3-

(2)由條件可知所求拋物線開口向下,
設(shè)點(diǎn)A(a,a),B(,a),
則AB=-a=,
所以3a2+8a-3=0,
解得a=-3或a=
當(dāng)a=-3時(shí),點(diǎn)A(-3,-3),B(-,-3),
因?yàn)轫旤c(diǎn)在y=x上,
所以頂點(diǎn)為(-,-),
所以可設(shè)二次函數(shù)為y=k(x+2-,
點(diǎn)A代入,解得k=-,
所以所求函數(shù)解析式為y=-(x+2-
同理,當(dāng)a=時(shí),所求函數(shù)解析式為y=-(x-2+

(3)設(shè)A(a,a),B(,a),由條件可知拋物線的對(duì)稱軸為x=+,
設(shè)所求二次函數(shù)解析式為:y=(x-2)(x-(a+)+2),
點(diǎn)A(a,a)代入,
解得a1=3,,
所以點(diǎn)P到直線AB的距離為3或
點(diǎn)評(píng):本題考查的是二次函數(shù)的綜合運(yùn)用,較為復(fù)雜.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知平行于x軸的直線y=a(a≠0)與函數(shù)y=x和函數(shù)y=
1
x
的圖象分別交于點(diǎn)A和點(diǎn)B,又有定點(diǎn)P(2,0).
(1)若a>0,且tan∠POB=
1
9
,求線段AB的長(zhǎng);
(2)在過(guò)A,B兩點(diǎn)且頂點(diǎn)在直線y=x上的拋物線中,已知線段AB=
8
3
,且在它的對(duì)稱軸左邊時(shí),y隨著x的增大而增大,試求出滿足條件的拋物線的解析式;
(3)已知經(jīng)過(guò)A,B,P三點(diǎn)的拋物線,平移后能得到y(tǒng)=
9
5
x2的圖象,求點(diǎn)P到直線AB的距離.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(32):2.7 最大面積是多少(解析版) 題型:解答題

已知平行于x軸的直線y=a(a≠0)與函數(shù)y=x和函數(shù)y=的圖象分別交于點(diǎn)A和點(diǎn)B,又有定點(diǎn)P(2,0).
(1)若a>0,且tan∠POB=,求線段AB的長(zhǎng);
(2)在過(guò)A,B兩點(diǎn)且頂點(diǎn)在直線y=x上的拋物線中,已知線段AB=,且在它的對(duì)稱軸左邊時(shí),y隨著x的增大而增大,試求出滿足條件的拋物線的解析式;
(3)已知經(jīng)過(guò)A,B,P三點(diǎn)的拋物線,平移后能得到y(tǒng)=x2的圖象,求點(diǎn)P到直線AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第26章《二次函數(shù)》中考題集(33):26.3 實(shí)際問(wèn)題與二次函數(shù)(解析版) 題型:解答題

已知平行于x軸的直線y=a(a≠0)與函數(shù)y=x和函數(shù)y=的圖象分別交于點(diǎn)A和點(diǎn)B,又有定點(diǎn)P(2,0).
(1)若a>0,且tan∠POB=,求線段AB的長(zhǎng);
(2)在過(guò)A,B兩點(diǎn)且頂點(diǎn)在直線y=x上的拋物線中,已知線段AB=,且在它的對(duì)稱軸左邊時(shí),y隨著x的增大而增大,試求出滿足條件的拋物線的解析式;
(3)已知經(jīng)過(guò)A,B,P三點(diǎn)的拋物線,平移后能得到y(tǒng)=x2的圖象,求點(diǎn)P到直線AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(33):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知平行于x軸的直線y=a(a≠0)與函數(shù)y=x和函數(shù)y=的圖象分別交于點(diǎn)A和點(diǎn)B,又有定點(diǎn)P(2,0).
(1)若a>0,且tan∠POB=,求線段AB的長(zhǎng);
(2)在過(guò)A,B兩點(diǎn)且頂點(diǎn)在直線y=x上的拋物線中,已知線段AB=,且在它的對(duì)稱軸左邊時(shí),y隨著x的增大而增大,試求出滿足條件的拋物線的解析式;
(3)已知經(jīng)過(guò)A,B,P三點(diǎn)的拋物線,平移后能得到y(tǒng)=x2的圖象,求點(diǎn)P到直線AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年北京市密云縣中考數(shù)學(xué)二模試卷 (解析版) 題型:解答題

已知平行于x軸的直線y=a(a≠0)與函數(shù)y=x和函數(shù)y=的圖象分別交于點(diǎn)A和點(diǎn)B,又有定點(diǎn)P(2,0).
(1)若a>0,且tan∠POB=,求線段AB的長(zhǎng);
(2)在過(guò)A,B兩點(diǎn)且頂點(diǎn)在直線y=x上的拋物線中,已知線段AB=,且在它的對(duì)稱軸左邊時(shí),y隨著x的增大而增大,試求出滿足條件的拋物線的解析式;
(3)已知經(jīng)過(guò)A,B,P三點(diǎn)的拋物線,平移后能得到y(tǒng)=x2的圖象,求點(diǎn)P到直線AB的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案