精英家教網(wǎng)如圖,一次函數(shù)y=-
3
3
x+1
的圖象與x軸、y軸交于點(diǎn)A、B,以線段AB為邊在第一象限內(nèi)作等邊△ABC,
(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點(diǎn)P(a,
1
2
);試用含有a的代數(shù)式表示四邊形ABPO的面積,并求出當(dāng)△ABP的面積與△ABC的面積相等時(shí)a的值;
(3)在x軸上,是否存在點(diǎn)M,使△MAB為等腰三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
分析:本題首先令x=0,y=0求出一次函數(shù)的解析式.然后根據(jù)勾股定理求出AB的長,繼而可求出三角形ABC的面積.然后依題意可得出S四邊形AOBC=S△ACB+S△ACP,當(dāng)S△ABP=S△ABC時(shí)求出a值.
解答:解:(1)分別令y=0和x=0,得一次函數(shù)y=-
3
3
x+1的圖象與x軸.
y軸的交點(diǎn)坐標(biāo)分別是A(
3
,0),B(0,1),即OA=
3
,OB=1,
∴AB=
OA2+OB2
=2
∵△ABC為等邊三角形,
∴S△ABC=
3
;

(2)如圖1,S△AOB=
3
2
,S△AOP=
3
4
,S△BOP=
1
2
|a|•OB=-
a
2

∴S四邊形ABPO=S△AOB+S△BOP=
3
-a
2
,
而S△ABP=S四邊形ABPO-S△APO
∴當(dāng)S△ABP=S△ABC時(shí),
3
-a
2
-
3
4
=
3

解得a=-
3
2
3
;
精英家教網(wǎng)
(3)如圖2,
滿足條件的點(diǎn)M有4個(gè):M1(-
3
,0),M2
3
-2,0),M3
3
3
,0),M4
3
+2,0).
點(diǎn)評:本題考查的是一次函數(shù)的綜合運(yùn)用以及三角形的面積計(jì)算,重點(diǎn)考查考生理解圖形的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點(diǎn)A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點(diǎn)A.當(dāng)y<3時(shí),x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點(diǎn)
A(m,2)
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時(shí),y1和y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點(diǎn)C,CD⊥x軸于點(diǎn)D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習(xí)冊答案