如圖,拋物線與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,拋物線的對(duì)稱軸與x軸相交于點(diǎn)M.P是拋物線在x軸上方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上).分別過點(diǎn)A、B作直線CP的垂線,垂足分別為D、E,連接點(diǎn)MD、ME.

(1)求點(diǎn)A,B的坐標(biāo)(直接寫出結(jié)果),并證明△MDE是等腰三角形;

(2)△MDE能否為等腰直角三角形?若能,求此時(shí)點(diǎn)P的坐標(biāo);若不能,說明理由;

(3)若將“P是拋物線在x軸上方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個(gè)動(dòng)點(diǎn)”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時(shí)點(diǎn)P的坐標(biāo)(直接寫出結(jié)果);若不能,說明理由.

 

【答案】

(1)A(1,0),B(5,0),證明見解析

(2)△MDE能成為等腰直角三角形,此時(shí)點(diǎn)P坐標(biāo)為(,3)

(3)能。此時(shí)點(diǎn)P坐標(biāo)為(,)。

【解析】

試題分析:(1)在拋物線解析式中,令y=0,解一元二次方程,可求得點(diǎn)A、點(diǎn)B的坐標(biāo)。如答圖1所示,作輔助線,構(gòu)造全等三角形△AMF≌△BME,得到點(diǎn)M為為Rt△EDF斜邊EF的中點(diǎn),從而得到MD=ME,問題得證。

中,令y=0,即﹣,解得x=1或x=5,

∴A(1,0),B(5,0)。

如答圖1所示,分別延長AD與EM,交于點(diǎn)F,

∵AD⊥PC,BE⊥PC,∴AD∥BE!唷螹AF=∠MBE。

在△AMF與△BME中,

∵∠MAF=∠MBE,MA=MB,∠AMF=∠BME,

∴△AMF≌△BME(ASA)。

∴ME=MF,即點(diǎn)M為Rt△EDF斜邊EF的中點(diǎn)。

∴MD=ME,即△MDE是等腰三角形。

(2)首先分析,若△MDE為等腰直角三角形,直角頂點(diǎn)只能是點(diǎn)M。如答圖2所示,設(shè)直線PC與對(duì)稱軸交于點(diǎn)N,證明△ADM≌△NEM,得到MN=AM,從而求得點(diǎn)N坐標(biāo)為(3,2);利用點(diǎn)N、點(diǎn)C坐標(biāo),求出直線PC的解析式;最后聯(lián)立直線PC與拋物線的解析式,求出點(diǎn)P的坐標(biāo)。

能。

,∴拋物線的對(duì)稱軸是直線x=3,M(3,0)

令x=0,得y=﹣4,∴C(0,﹣4)。

△MDE為等腰直角三角形,有3種可能的情形:

①若DE⊥EM,

由DE⊥BE,可知點(diǎn)E、M、B在一條直線上,而點(diǎn)B、M在x軸上,因此點(diǎn)E必然在x軸上。

由DE⊥BE,可知點(diǎn)E只能與點(diǎn)O重合,即直線PC與y軸重合,不符合題意。

故此種情況不存在。

②若DE⊥DM,與①同理可知,此種情況不存在。

③若EM⊥DM,如答圖2所示,

設(shè)直線PC與對(duì)稱軸交于點(diǎn)N,

∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA。

在△ADM與△NEM中,

∵∠DMA =∠EMN,DM = EM,∠ADM=∠NEM=135°,

∴△ADM≌△NEM(ASA)!郙N=MA。

∵M(jìn)(3,0),MN=MA=2,∴N(3,2)。

設(shè)直線PC解析式為y=kx+b,

∵點(diǎn)N(3,2),C(0,﹣4)在拋物線上,

,解得

∴直線PC解析式為y=2x﹣4。

將y=2x﹣4代入拋物線解析式得: ,解得:x=0或x=。

當(dāng)x=0時(shí),交點(diǎn)為點(diǎn)C;當(dāng)x=時(shí),y=2x﹣4=3。

∴P(,3)。

綜上所述,△MDE能成為等腰直角三角形,此時(shí)點(diǎn)P坐標(biāo)為(,3)。

(3)當(dāng)點(diǎn)P是拋物線在x軸下方的一個(gè)動(dòng)點(diǎn)時(shí),解題思路與(2)完全相同:

如答題3所示,設(shè)對(duì)稱軸與直線PC交于點(diǎn)N,

與(2)同理,可知若△MDE為等腰直角三角形,直角頂點(diǎn)只能是點(diǎn)M。

∵M(jìn)D⊥ME,MA⊥MN,∴∠DMN=∠EMB。

在△DMN與△EMB中,

∵∠SMN =∠EMB,DM = EM,∠MDN=∠MEB=45°,

∴△DMN≌△EMB(ASA)!郙N=MB!郚(3,﹣2)。

設(shè)直線PC解析式為y=kx+b,

∵點(diǎn)N(3,﹣2),C(0,﹣4)在拋物線上,

,解得。

∴直線PC解析式為y=x﹣4。

將y=x﹣4代入拋物線解析式得:,解得:x=0或x=。

當(dāng)x=0時(shí),交點(diǎn)為點(diǎn)C;當(dāng)x=時(shí),y=x﹣4=。∴P(,)。

綜上所述,△MDE能成為等腰直角三角形,此時(shí)點(diǎn)P坐標(biāo)為(,)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知A(5,-4),⊙A與x軸分別相交于點(diǎn)B、C,⊙A與y軸相且于點(diǎn)D,
(1)求證過D、B、C三點(diǎn)的拋物線的解析式;
(2)連接BD,求tan∠BDC的值;
(3)點(diǎn)P是拋物線頂點(diǎn),線段DE是直徑,直線PC與直線DE相交于點(diǎn)F,
∠PFD的平分線FG交DC于G,求sin∠CGF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)B(-2,0)C(-4,0),過點(diǎn)B,C的⊙M與直線x=-1相切于點(diǎn)精英家教網(wǎng)A(A在第二象限),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)是A1,直線AA1與x軸相交點(diǎn)P
(1)求證:點(diǎn)A1在直線MB上;
(2)求以M為頂點(diǎn)且過A1的拋物線的解析式;
(3)設(shè)過點(diǎn)A1且平行于x軸的直線與(2)中的拋物線的另一交點(diǎn)為D,當(dāng)⊙D與⊙M相切時(shí),求⊙D的半徑和切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=x2+bx+c與x軸的一個(gè)相交點(diǎn)坐標(biāo)為A(1,0),與y軸上的交點(diǎn)坐標(biāo)C(0,3).
(1)求拋物線的函數(shù)關(guān)系式;
(2)求與x軸的另一交點(diǎn)坐標(biāo)B;
(3)若點(diǎn)D(
72
,m)是拋物線y=x2+bx+c上的一點(diǎn),請(qǐng)求出m的值,并求出此時(shí)△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•相城區(qū)一模)如圖,拋物線y=
1
4
x2+bx+c的頂點(diǎn)為M,對(duì)稱軸是直線x=1,與x軸的交點(diǎn)為A(-3,0)和B.將拋物線y=
1
4
x2+bx+c繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)M1,A1為點(diǎn)M,A旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn),旋轉(zhuǎn)后的拋物線與y軸相交于C,D兩點(diǎn).
(1)寫出點(diǎn)B的坐標(biāo)及求拋物線y=
1
4
x2+bx+c的解析式;
(2)求證:A,M,A1三點(diǎn)在同一直線上;
(3)設(shè)點(diǎn)P是旋轉(zhuǎn)后拋物線上DM1之間的一動(dòng)點(diǎn),是否存在一點(diǎn)P,使四邊形PM1MD的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及四邊形PM1MD的面積;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(-3,0)、B(1,0)兩點(diǎn),與y軸相交點(diǎn)C(0,
3
).
(1)求該二次函數(shù)解析式;
(2)連接AC、BC,點(diǎn)M、N分別是線段AB、BC上的動(dòng)點(diǎn),且始終滿足BM=BN,連接MN.
①將△BMN沿MN翻折,B點(diǎn)能恰好落在AC邊上的P處嗎?若能,請(qǐng)判斷四邊形BMPN的形狀并求出PN的長;若不能,請(qǐng)說明理由.   
②將△BMN沿MN翻折,B點(diǎn)能恰好落在此拋物線上嗎?若能,請(qǐng)直接寫出此時(shí)B點(diǎn)關(guān)于MN的對(duì)稱點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案