有六張完全相同的卡片,分A,B兩組,每組三張,在A組的卡片上分別畫上“√,×,×”,如圖1.

(1)若將卡片無標(biāo)記的一面朝上擺在桌上再分別從兩組卡片中隨機(jī)各抽取一張,求兩張卡片上標(biāo)記都是“√”的概率.(請用“樹形圖法”或“列表法“求解)

(2)若把A,B兩組卡片無標(biāo)記的一面對應(yīng)粘貼在一起得到三張卡片,其正、反面標(biāo)記如圖2所示,將卡片正面朝上擺在桌上,并用瓶蓋蓋住標(biāo)記.

①若隨機(jī)揭開其中一個蓋子,看到的標(biāo)記是“√”的概率是多少?

②若揭開蓋子,看到的卡片正面標(biāo)記是“√”后,猜想它的反面也是“√”,求猜對的概率.


解:(1)列表如下:

×

(√,√)

(×,√)

(√,√)

×

(√,×)

(×,×)

(√,×)

×

(√,×)

(×,×)

(√,×)

所有等可能的情況有9種,兩種卡片上標(biāo)記都是“√”的情況有2種,

則P=;

(2)①所有等可能的情況有3種,其中隨機(jī)揭開其中一個蓋子,看到的標(biāo)記是“√”的情況有2種,

則P=

②所有等可能的情況有2種,其中揭開蓋子,看到的卡片正面標(biāo)記是“√”后,它的反面也是“√”的情況有1種,

則P=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


某校對本校九年級全體同學(xué)體育測試情況進(jìn)行調(diào)查,他們隨機(jī)抽查部分同學(xué)體育測試成績(由高到低分四個等級),根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:

(1)該校共抽查了__________名同學(xué)的體育測試成績,扇形統(tǒng)計圖中A、B、C級所占的百分比分別為a=___________;b= ___________;c=_________;

(2)補(bǔ)全條形統(tǒng)計圖;

(3)若該校九年級共有800名同學(xué),請估計該校九年級同學(xué)體育測試達(dá)標(biāo)(測試成績B級以上,含B級)約有___________名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


將相同的矩形卡片,按如圖方式擺放在一個直角上,每個矩形卡片長為2,寬為1,依此類推,擺放2014個時,實線部分長為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AB∥DE,AC∥DF,AC=DF,下列條件中不能判斷△ABC≌△DEF的是(  )

 

A.

AB=DE

B.

∠B=∠E

C.

EF=BC

D.

EF∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


不等式組的解集是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖1,邊長為4的正方形ABCD中,點E在AB邊上(不與點A,B重合),點F在BC邊上(不與點B,C重合).

第一次操作:將線段EF繞點F順時針旋轉(zhuǎn),當(dāng)點E落在正方形上時,記為點G;

第二次操作:將線段FG繞點G順時針旋轉(zhuǎn),當(dāng)點F落在正方形上時,記為點H;

依次操作下去…

(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為   ,求此時線段EF的長;

(2)若經(jīng)過三次操作可得到四邊形EFGH.

①請判斷四邊形EFGH的形狀為   ,此時AE與BF的數(shù)量關(guān)系是   ;

②以①中的結(jié)論為前提,設(shè)AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;

(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1與CD交于點O,則四邊形AB1OD的面積是( 。

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b的圖象與x軸相交于點A(﹣2,0),與y軸交于點C,與反比例函數(shù)在第一象限內(nèi)的圖象交于點B(m,n),連結(jié)OB.若S△AOB=6,S△BOC=2.

(1)求一次函數(shù)的表達(dá)式;

(2)求反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,A點的坐標(biāo)為(﹣4,0),直線y=x+n與坐標(biāo)軸交于點B,C,連接AC,如果∠ACD=90°,則n的值為( 。

 

A.

﹣2

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊答案