9、觀察下列算式:
4×1×2+1=32
4×2×3+l=52
4×3×4+l=72
4×4×5+1=92
用代數(shù)式表示上述的規(guī)律是
4a(a+1)+1=(2a+1)2
分析:等式的左邊是兩個(gè)連續(xù)自然數(shù)的積的4倍與1的和,等式的右邊進(jìn)一步利用完全平方公式即可找出答案.
解答:解:∵4×1×2+1=(2×1+1)=32
4×2×3+l=(2×2+1)=52,
4×3×4+l=(2×3+1)=72,
4×4×5+1=(2×4+1)=92,
∴規(guī)律是:4a(a+1)+1=(2a+1)2
故答案為:4a(a+1)+1=(2a+1)2
點(diǎn)評(píng):本題考查了規(guī)律型:數(shù)字的變化,解題的關(guān)鍵是熟練掌握完全平方公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、觀察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…則230的尾數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、觀察下列算式:32-12=8,52-32=16,72-52=24,92-72=32,…,請(qǐng)將你發(fā)現(xiàn)的規(guī)律用式子表示出來(lái):
(2n+1)2-(2n-1)2=8n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列算式:
①1×3-22=3-4=-1
②2×4-32=8-9=-1
③3×5-42=15-16=-1
4×6-52=24-25=-1
4×6-52=24-25=-1


(1)請(qǐng)你按以上規(guī)律寫(xiě)出第4個(gè)算式;
4×6-52=24-25=-1
4×6-52=24-25=-1

(2)把這個(gè)規(guī)律用含字母的式子表示出來(lái);
n×(n+2)-(n+1)2=-1
n×(n+2)-(n+1)2=-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,通過(guò)觀察,用你發(fā)現(xiàn)的規(guī)律,寫(xiě)出72012的末位數(shù)字
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列算式:
21=2;22=4;23=8;24=16;25=32;26=64;27=128;28=256;

(1)通過(guò)觀察發(fā)現(xiàn)2n的個(gè)位數(shù)字是由
4
4
種數(shù)字組成的,它們分別是
2、4、8、6
2、4、8、6

(2)用你所發(fā)現(xiàn)的規(guī)律寫(xiě)出89的末位數(shù)是
2
2

(3)22003的末位數(shù)是
8
8

查看答案和解析>>

同步練習(xí)冊(cè)答案