在數(shù)學(xué)活動課中,小輝將邊長為和3的兩個正方形放置在直線l上,如圖1,他連結(jié)AD、CF,經(jīng)測量發(fā)現(xiàn)AD=CF.
(1)他將正方形ODEF繞O點(diǎn)逆時針旋轉(zhuǎn)一定的角度,如圖2,試判斷AD與CF還相等嗎?說明你的理由;
(2)他將正方形ODEF繞O點(diǎn)逆時針旋轉(zhuǎn),使點(diǎn)E旋轉(zhuǎn)至直線l上,如圖3,請你求出CF的長.
解:(1)AD=CF。理由如下:
在正方形ABCO和正方形ODEF中,∵AO=CO,OD=OF,∠AOC=∠DOF=90°,
∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF。
在△AOD和△COF中,∵AO=CO,∠AOD=∠COF,OD=OF,
∴△AOD≌△COF(SAS)。
∴AD=CF。
(2)與(1)同理求出CF=AD,
如圖,連接DF交OE于G,則DF⊥OE,DG=OG=OE,
∵正方形ODEF的邊長為,∴OE=×=2。
∴DG=OG=OE=×2=1。
∴AG=AO+OG=3+1=4,
在Rt△ADG中,,
∴CF=AD=。
【解析】(1)根據(jù)正方形的性質(zhì)可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“邊角邊”證明△AOD和△COF全等,根據(jù)全等三角形對應(yīng)邊相等即可得證。
(2)與(1)同理求出CF=AD,連接DF交OE于G,根據(jù)正方形的對角線互相垂直平分可得DF⊥OE,DG=OGOE,再求出AG,然后利用勾股定理列式計算即可求出AD!
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年湖南省湘潭市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com