【題目】你能用一張長方形的紙片折出一個正三角形嗎?動手試一試,簡單敘述你的折法.
【答案】如圖,先把矩形紙片對折,然后在沿著BM對折使C落在EF上的N點,再折出BM和CN即可.
【解析】試題分析:把長方形紙片ABCD的寬對折,然后展開,折痕記為EF,再把AD邊折起,點D折疊到EF上,與EF的重合點為M,在CD上的折痕為點G,再沿GM對折,在AB上的折痕為H,則三角形AHG就是一個正三角形.
試題解析:解:如圖,
連接AM,在△AMG和△AMH中,
AM=AM(公共邊),∠AMG=∠AMH=90°(等于∠D是直角),MG=MH(M在對折點上),
∴△AMG≌△AMH(SAS),∴AG=AH.
∵∠DAG=∠GAM=∠MAH,∴∠GAH=60°,∴△AHG就是一個正三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:Rt△ABE≌Rt△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出定義:設(shè)一條直線與一條拋物線只有一個公共點,且這條直線與這條拋物線的對稱軸不平行,就稱直線與拋物線相切,這條直線是拋物線的切線.有下列命題: ①直線y=0是拋物線y= x2的切線;
②直線x=﹣2與拋物線y= x2 相切于點(﹣2,1);
③若直線y=x+b與拋物線y= x2相切,則相切于點(2,1);
④若直線y=kx﹣2與拋物線y= x2相切,則實數(shù)k= .
其中正確命題的是( )
A.①②④
B.①③
C.②③
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,OE⊥AB,OF⊥AC且OE=OF.
(1)如圖,當(dāng)點O在BC邊中點時,試說明AB=AC;
(2)如圖,當(dāng)點O在△ABC內(nèi)部時,且OB=OC,試說明AB與AC的關(guān)系;
(3)當(dāng)點O在△ABC外部時,且OB=OC,試判斷AB與AC的關(guān)系.(畫出圖形,寫出結(jié)果即可,無須說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形以特殊的對稱美而深受人們的喜愛,在生產(chǎn)生活中有著廣泛的應(yīng)用,小龍家里有一面長4.2m、寬2.8m的墻壁準(zhǔn)備裝修,現(xiàn)有如圖甲所示的型號瓷磚,其形狀是一塊長30cm、寬20cm的矩形,中間白色部分為菱形,陰影部分為帶淡藍色花紋的全等的四個直角三角形,解答下列各問:
(1)小龍家里的墻壁最少要貼這種瓷磚多少塊?
(2)全部貼滿后,這面墻壁上有多少個有淡藍色花紋的菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】比較下面每小題中兩個算式結(jié)果的大小(在橫線上填“>”、“<”或“=”).
⑴32+42 2×3×4;⑵22+22 2×2×2;⑶12+ 2×1×;
⑷(-2) 2+52 2×(-2)×5;⑸
通過觀察上面的算式,請你用字母來表示上面算式中反映的一般規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的中線BE,CF相交于點G,P、Q分別是BG、CG的中點.
(1)求證:四邊形EFPQ是平行四邊形;
(2)請直接寫出BG與GE的數(shù)量關(guān)系.(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】花粉的質(zhì)量很小,一粒某種植物花粉的質(zhì)量約為0.000037毫克,已知1克=1000毫克,那么0.000000037毫克可用科學(xué)記數(shù)法表示為( )
A.3.7×10﹣5克B.3.7×10﹣6克C.37×10﹣7克D.3.7×10﹣8克
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等腰直角△ABC外一點,把BP繞點B順時針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,則P′A:PB=( )
A.1:
B.1:2
C. :2
D.1:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com