(2003•甘肅)閱讀以下材料并填空.
平面上有n個點(n≥2),且任意三個點不在同一直線上,過這些點作直線,一共能作出多少條不同的直線?
(1)分析:當僅有兩個點時,可連成1條直線;
當有3個點時,可連成3條直線;
當有4個點時,可連成6條直線;
當有5個點時,可連成10條直線;

(2)歸納:考察點的個數(shù)n和可連成直線的條數(shù)Sn,發(fā)現(xiàn):
(3)推理:平面上有n個點,兩點確定一條直線.取第一個點A有n種取法,取第二個點B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應除以2,即
(4)結(jié)論:
點的個數(shù)可連成直線條數(shù)
2 l=S2=
33=S3=
4 6=S4=
5 10=S5=
n Sn=
試探究以下問題:
平面上有n(n≥3)個點,任意三個點不在同一直線上,過任意三點作三角形,一共能作出多少不同的三角形?
①分析:
當僅有3個點時,可作______個三角形;
當有4個點時,可作______個三角形;
當有5個點時,可作______個三角形;

②歸納:考察點的個數(shù)n和可作出的三角形的個數(shù)Sn,發(fā)現(xiàn):
點的個數(shù)可連成三角形個數(shù)
3 
4 
5 
n 
③推理:______
取第一個點A有n種取法,
取第二個點B有(n-1)種取法,
取第三個點C有(n-2)種取法,
但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6.
④結(jié)論:______.
【答案】分析:根據(jù)閱讀材料發(fā)現(xiàn)其中的規(guī)律與解題思.分析可得平面上有n個點,過不在同一條直線上的三點可以確定一個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法,取第三個點C有(n-2)種取法,所以一共可以作n(n-1)(n-2)個三角形,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6,故可得答案.
解答:解:(1)當僅有3個點時,可作1個三角形;
當有4個點時,可作4個三角形;
當有5個點時,可作10個三角形.

(2)當n=3時,可作出的三角形的個數(shù)S3=;
當n=4時,可作出的三角形的個數(shù)S4=
當n=5時,可作出的三角形的個數(shù)S5=;
當點的個數(shù)是n時,可作出的三角形的個數(shù)Sn=

(3)平面上有n個點,過不在同一條直線上的三點可以確定一個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法,取第三個點C有(n-2)種取法,所以一共可以作n(n-1)(n-2)個三角形,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6,即

(4)
點評:本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•甘肅)已知拋物線y=ax2+bx經(jīng)過點A(2,0),頂點為D(1,-1).
(1)確定拋物線的解析式;
(2)直線y=3與拋物線相交于B、C兩點(B點在C點左側(cè)),以BC為一邊,原點O為另一頂點作平行四邊形,設(shè)平行四邊形的面積為S,求S的值;
(3)若以(2)小題中BC為一邊,拋物線上的任一點P為另一頂點作平行四邊形,當平行四邊形面積為8時,試確定P點的坐標;
(4)當-2≤x≤4時,(3)小題中平行四邊形的面積是否有最大值?若有請求出,若無請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年甘肅省中考數(shù)學試卷(2)(解析版) 題型:解答題

(2003•甘肅)已知拋物線y=ax2+bx經(jīng)過點A(2,0),頂點為D(1,-1).
(1)確定拋物線的解析式;
(2)直線y=3與拋物線相交于B、C兩點(B點在C點左側(cè)),以BC為一邊,原點O為另一頂點作平行四邊形,設(shè)平行四邊形的面積為S,求S的值;
(3)若以(2)小題中BC為一邊,拋物線上的任一點P為另一頂點作平行四邊形,當平行四邊形面積為8時,試確定P點的坐標;
(4)當-2≤x≤4時,(3)小題中平行四邊形的面積是否有最大值?若有請求出,若無請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《代數(shù)式》(03)(解析版) 題型:解答題

(2003•甘肅)閱讀以下材料并填空.
平面上有n個點(n≥2),且任意三個點不在同一直線上,過這些點作直線,一共能作出多少條不同的直線?
(1)分析:當僅有兩個點時,可連成1條直線;
當有3個點時,可連成3條直線;
當有4個點時,可連成6條直線;
當有5個點時,可連成10條直線;

(2)歸納:考察點的個數(shù)n和可連成直線的條數(shù)Sn,發(fā)現(xiàn):
(3)推理:平面上有n個點,兩點確定一條直線.取第一個點A有n種取法,取第二個點B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應除以2,即
(4)結(jié)論:
點的個數(shù)可連成直線條數(shù)
2 l=S2=
33=S3=
4 6=S4=
5 10=S5=
n Sn=
試探究以下問題:
平面上有n(n≥3)個點,任意三個點不在同一直線上,過任意三點作三角形,一共能作出多少不同的三角形?
①分析:
當僅有3個點時,可作______個三角形;
當有4個點時,可作______個三角形;
當有5個點時,可作______個三角形;

②歸納:考察點的個數(shù)n和可作出的三角形的個數(shù)Sn,發(fā)現(xiàn):
點的個數(shù)可連成三角形個數(shù)
3 
4 
5 
n 
③推理:______
取第一個點A有n種取法,
取第二個點B有(n-1)種取法,
取第三個點C有(n-2)種取法,
但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6.
④結(jié)論:______.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年甘肅省中考數(shù)學試卷(2)(解析版) 題型:解答題

(2003•甘肅)閱讀以下材料并填空.
平面上有n個點(n≥2),且任意三個點不在同一直線上,過這些點作直線,一共能作出多少條不同的直線?
(1)分析:當僅有兩個點時,可連成1條直線;
當有3個點時,可連成3條直線;
當有4個點時,可連成6條直線;
當有5個點時,可連成10條直線;

(2)歸納:考察點的個數(shù)n和可連成直線的條數(shù)Sn,發(fā)現(xiàn):
(3)推理:平面上有n個點,兩點確定一條直線.取第一個點A有n種取法,取第二個點B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應除以2,即
(4)結(jié)論:
點的個數(shù)可連成直線條數(shù)
2 l=S2=
33=S3=
4 6=S4=
5 10=S5=
n Sn=
試探究以下問題:
平面上有n(n≥3)個點,任意三個點不在同一直線上,過任意三點作三角形,一共能作出多少不同的三角形?
①分析:
當僅有3個點時,可作______個三角形;
當有4個點時,可作______個三角形;
當有5個點時,可作______個三角形;

②歸納:考察點的個數(shù)n和可作出的三角形的個數(shù)Sn,發(fā)現(xiàn):
點的個數(shù)可連成三角形個數(shù)
3 
4 
5 
n 
③推理:______
取第一個點A有n種取法,
取第二個點B有(n-1)種取法,
取第三個點C有(n-2)種取法,
但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應除以6.
④結(jié)論:______.

查看答案和解析>>

同步練習冊答案