【題目】在平面直角坐標(biāo)系中,若將三角形上各點的縱坐標(biāo)都減去3,橫坐標(biāo)保持不變,則所得圖形在原圖形的基礎(chǔ)上( )
A. 向左平移了3個單位長度 B. 向下平移了3個單位長度
C. 向上平移了3個單位長度 D. 向右平移了3個單位長度
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果汽車向南行駛30米記作+30米,那么-50米表示( )
A. 向東行駛50米 B. 向西行駛50米 C. 向南行駛50米 D. 向北行駛50米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一螞蟻從原點O出發(fā),按向上、向右、向下、向右的方向依次不斷移動,每次移動1個單位,其行走路線如圖所示.
(1)填寫下列各點的坐標(biāo):A4( , ),A8( , ),A12( , ).
(2)寫出點A4n的坐標(biāo)(n是正整數(shù));
(3)指出螞蟻從點A100到點A101的移動方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一矩形紙片OABC放在平面直角坐標(biāo)系中,O(0,0),A(6,0),C(0,3).動點Q從點O出發(fā)以每秒1個單位長的速度沿OC向終點C運動,運動秒時,動點P從點A出發(fā)以相等的速度沿AO向終點O運動.當(dāng)其中一點到達終點時,另一點也停止運動.設(shè)點P的運動時間為t(秒).
(1)求點B的坐標(biāo),并用含t的代數(shù)式表示OP,OQ;
(2)當(dāng)t=1時,如圖1,將△OPQ沿PQ翻折,點O恰好落在CB邊上的點D處,求點D的坐標(biāo);
(3)在(2)的條件下,矩形對角線AC,BO交于M,取OM中點G,BM中點H,求證當(dāng)t=1時四邊形DGPH是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我國南海某海域探明可燃冰儲量約有175億立方米.數(shù)字175億用科學(xué)記數(shù)法表示為( )
A. 1.75×1010 B. 0.175×1010 C. 17.5×109 D. 1.75×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列數(shù)據(jù)是某班六位同學(xué)定點投籃(每人投10個)的情況,投進籃筐的個數(shù)為6,9,8,4,0,3,這組數(shù)據(jù)的平均數(shù)、中位數(shù)和極差分別是
A.6,6,9 B.6,5,9 C.5,6,6 D.5,5,9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材在探索平方差公式時利用了面積法,面積法除了可以幫助我們記憶公式,還
可以直觀地推導(dǎo)或驗證公式,俗稱“無字證明”,例如,著名的趙爽弦圖(如圖①,其中四個直角三角形
較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為,也可以
表示為4×ab+由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長為a,b,斜邊長為c,
則.
(1)、圖②為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你利用圖②推導(dǎo)勾股定理.
(2)、如圖③,直角△ABC中,∠ACB=90°,AC=3cm,BC=4cm,則斜邊AB上的高CD的長為 cm.
(3)、試構(gòu)造一個圖形,使它的面積能夠解釋,畫在下面的網(wǎng)格中,并標(biāo)出字母a、b所表示的線段.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com