【題目】如圖,正方形ABCD的邊長為4,點E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為F,則EF的長為( 。
A.1
B.
C.4﹣2
D.3﹣4
【答案】C
【解析】解:在正方形ABCD中,∠ABD=∠ADB=45°,
∵∠BAE=22.5°,
∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,
在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,
∴∠DAE=∠AED,
∴AD=DE=4,
∵正方形的邊長為4,
∴BD=4 ,
∴BE=BD﹣DE=4﹣4,
∵EF⊥AB,∠ABD=45°,
∴△BEF是等腰直角三角形,
∴EF=BE=×(4﹣4)=4﹣2 .
故選:C.
根據(jù)正方形的對角線平分一組對角可得∠ABD=∠ADB=45°,再求出∠DAE的度數(shù),根據(jù)三角形的內(nèi)角和定理求∠AED,從而得到∠DAE=∠AED,再根據(jù)等角對等邊的性質(zhì)得到AD=DE,然后求出正方形的對角線BD,再求出BE,最后根據(jù)等腰直角三角形的直角邊等于斜邊的倍計算即可得解.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,下面說法正確的個數(shù)是( 。﹤.
①若O是△ABC的外心,∠A=50°,則∠BOC=100°;
②若O是△ABC的內(nèi)心,∠A=50°,則∠BOC=115°;
③若BC=6,AB+AC=10,則△ABC的面積的最大值是12;
④△ABC的面積是12,周長是16,則其內(nèi)切圓的半徑是1.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形OABC的面積為9,點O為坐標原點,點A、C分別在x軸、y軸上,點B 在函數(shù)(k>0,x>0)的圖象上,點P (m,n)是函數(shù)(k>0,x>0)的圖象上任意一點,過P分別作x軸、y軸的垂線,垂足為E、F,設矩形OEPF在正方形OABC以外的部分的面積為S.
①求B點坐標和k的值;
②當時,求點P的坐標;
③寫出S關于m的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,點D從點C出發(fā)沿CA方向以4 cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2 cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D,E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF。
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,請說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A坐標為(2,4),直線x=2與x軸相交于點B,拋物線y=x2的頂點在直線AO上運動,與直線x=2交于點P,設平移后的拋物線頂點M的橫坐標為m.
(1)如圖1,若m=﹣1,求點P的坐標;
(2)在拋物線平移的過程中,當△PMA是等腰三角形時,求m的值;
(3)如圖2,當線段BP最短時,相應的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班組織班團活動,班委會準備用15元錢全部用來購買筆記本和中性筆兩種獎品,已知筆記本2元/本,中性筆1元/支,且每種獎品至少買1件.
(1)若設購買筆記本x本,中性筆y支,寫出y與x之間的關系式;
(2)有多少種購買方案?請列舉所有可能的結果;
(3)從上述方案中任選一種方案購買,求買到的中性筆與筆記本數(shù)量相等的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是( )
A. 30 B. 34 C. 36 D. 40
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,O為直線AB上一點,過點O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點O以每秒3°的速度沿順時針方向旋轉一周.如圖2,經(jīng)過t秒后OM恰好平分∠BOC,則t= (直接寫結果)
(2)在(1)問的基礎上,若三角板在轉動的同時,射線OC也繞O點以每秒6°的速度沿順時針方向旋轉一周,如圖3,那么經(jīng)過多少秒后OC平分∠MON?請說明理由;
(3)在(2)問的基礎上,那么經(jīng)過多少秒∠MOC=36°?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列判斷正確的是( )
A. 有理數(shù)就是正數(shù)和負數(shù) B. 沒有最小的有理數(shù)
C. 任何兩個有理數(shù)一定可以進行加減乘除運算 D. 在,,,,,中,負數(shù)共有個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com