如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O(shè)、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標;
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標;若不存在,說明理由.
精英家教網(wǎng)
分析:(1)已知拋物線的頂點為A(2,1),設(shè)拋物線頂點式,把點O(0,0)代入即可求解析式;
(2)依題意得CD∥OB,CD=OB=4,又對稱軸x=2,故D點橫坐標x=6,代入拋物線解析式可求D點縱坐標,根據(jù)對稱軸可求滿足條件的點D′;
(3)根據(jù)拋物線對稱軸可知AO=AB,△AOB為等腰三角形,要使得△OBP與△OAB相似,則∠POB=∠BOA,A與A′對稱,可求直線OP的解析式,與拋物線解析式聯(lián)立可求P點坐標,檢驗BP與OB是否相等.
解答:解:(1)由題意可設(shè)拋物線的解析式為
y=a(x-2)2+1
∵拋物線過原點,
∴0=a(0-2)2+1,
a=-
1
4

拋物線的解析式為y=-
1
4
(x-2)2+1,
即y=-
1
4
x2+x精英家教網(wǎng)

(2)如圖1,當四邊形OCDB是平行四邊形時,CD=OB,
由0=-
1
4
(x-2)2+1得x1=0,x2=4,
∴B(4,0),OB=4.
由于對稱軸x=2
∴D點的橫坐標為6.
將x=6代入y=-
1
4
(x-2)2+1,得y=-3,
∴D(6,-3);
根據(jù)拋物線的對稱性可知,
在對稱軸的左側(cè)拋物線上存在點D,使得四邊形ODCB是平行四邊形,此時D點的坐標為(-2,-3),
當四邊形OCBD是平行四邊形時,D點即為A點,此時D點的坐標為(2,1)

(3)不存在.
如圖2,由拋物線的對稱性可知:AO=AB,∠AOB=∠ABO.
若△BOP與△AOB相似,必須有∠POB=∠BOA=∠BPO
設(shè)OP交拋物線的對稱軸于A′點,顯然A′(2,-1)
∴直線OP的解析式為y=-
1
2
x
由-
1
2
x=-
1
4
x2+x,得x1=0,x2=6.精英家教網(wǎng)
∴P(6,-3)
過P作PE⊥x軸,在Rt△BEP中,BE=2,PE=3,
∴PB=
13
≠4.
∴PB≠OB,
∴∠BOP≠∠BPO,
∴△PBO與△BAO不相似,
同理可說明在對稱軸左邊的拋物線上也不存在符合條件的P點.
所以在該拋物線上不存在點P,使得△BOP與△AOB相似.
點評:本題考查了二次函數(shù)解析式的求法,利用拋物線的性質(zhì)尋找平行四邊形,相似三角形等問題,需要根據(jù)拋物線的對稱性,形數(shù)結(jié)合,解答問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、E在x軸上,CF交y軸于點B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點P為所求拋物線上的一動點,試判斷以點P為圓心,PB為半徑的圓與x軸的位置關(guān)系,并說明理由.
(3)如圖2,設(shè)點P在拋物線上且與點A不重合,直線PB與拋物線的另一個交點為Q,過點P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知拋物線的頂點為A(O,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•黔南州)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B,且其面積為8,F(xiàn)點的坐標為(2,2).
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連結(jié)PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.

(1)求拋物線的解析式;
(2)連接OA,AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案