【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)B,交BC于另一點(diǎn)F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
【答案】
(1)解:過(guò)點(diǎn)O作OG⊥DC,垂足為G.
∵AD∥BC,AE⊥BC于E,
∴OA⊥AD.
∴∠OAD=∠OGD=90°.
在△ADO和△GDO中 ,
∴△ADO≌△GDO.
∴OA=OG.
∴DC是⊙O的切線
(2)解:如圖所示:連接OF.
∵OA⊥BC,
∴BE=EF= BF=12.
在Rt△OEF中,OE=5,EF=12,
∴OF= =13.
∴AE=OA+OE=13+5=18.
∴tan∠ABC= =
【解析】(1)過(guò)點(diǎn)O作OG⊥DC,垂足為G.先證明∠OAD=90°,從而得到∠OAD=∠OGD=90°,然后利用AAS可證明△ADO≌△GDO,則OA=OG=r,則DC是⊙O的切線;(2)連接OF,依據(jù)垂徑定理可知BE=EF=12,在Rt△OEF中,依據(jù)勾股定理可知求得OF=13,然后可得到AE的長(zhǎng),最后在Rt△ABE中,利用銳角三角函數(shù)的定義求解即可.
【考點(diǎn)精析】關(guān)于本題考查的梯形的定義和解直角三角形,需要了解一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形.兩腰相等的梯形是等腰梯形;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題
(1)計(jì)算:|2﹣ |﹣ ( ﹣ )+ ;
(2)先化簡(jiǎn),再求值: ÷ + ,其中x=﹣ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D,E分別在AC,BC上(點(diǎn)D與點(diǎn)A,C不重合),且∠DEC=∠A,將△DCE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到△DC′E′.當(dāng)△DC′E′的斜邊、直角邊與AB分別相交于點(diǎn)P,Q(點(diǎn)P與點(diǎn)Q不重合)時(shí),設(shè)CD=x,PQ=y.
(1)求證:∠ADP=∠DEC;
(2)求y關(guān)于x的函數(shù)解析式,并直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,順次連接腰長(zhǎng)為2的等腰直角三角形各邊中點(diǎn)得到第1個(gè)小三角形,再順次連接所得的小三角形各邊中點(diǎn)得到第2個(gè)小三角形,如此操作下去,則第n個(gè)小三角形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,E、F是AD邊上的兩個(gè)動(dòng)點(diǎn),且AE=FD,連接BE、CF、BD,CF與BD交于點(diǎn)G,連接AG交BE于點(diǎn)H,連接DH,下列結(jié)論正確的個(gè)數(shù)是( ) ①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤線段DH的最小值是2 ﹣2.
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O.若四邊形ABCD是正方形如圖1:則有AC=BD,AC⊥BD. 旋轉(zhuǎn)圖1中的Rt△COD到圖2所示的位置,AC′與BD′有什么關(guān)系?(直接寫出)
若四邊形ABCD是菱形,∠ABC=60°,旋轉(zhuǎn)Rt△COD至圖3所示的位置,AC′與BD′又有什么關(guān)系?寫出結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB= ,E是BC的中點(diǎn),AE⊥BD于點(diǎn)F,則CF的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD平分∠ACB交⊙O于D,過(guò)點(diǎn)D作PQ∥AB分別交CA、CB延長(zhǎng)線于P、Q,連接BD.
(1)求證:PQ是⊙O的切線;
(2)求證:BD2=ACBQ;
(3)若AC、BQ的長(zhǎng)是關(guān)于x的方程x+ =m的兩實(shí)根,且tan∠PCD= ,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com