如圖所示為圓柱形大型儲油罐固定在U型槽上的橫截面圖.已知圖中ABCD為等腰梯形(AB∥DC),支點A與B相距8m,罐底最低點到地面CD距離為1m.設油罐橫截面圓心為O,半徑為5m,∠D=56°,求:U型槽的橫截面(陰影部分)的面積.(參考數(shù)據(jù):sin53°≈0.8,tan56°≈1.5,π≈3,結果保留整數(shù))

【答案】分析:連接AO、BO.過點A作AE⊥DC于點E,過點O作ON⊥DC于點N,ON交⊙O于點M,交AB于點F,則OF⊥AB,先根據(jù)垂徑定理求出AF的值,再在Rt△AOF中利用銳角三角函數(shù)的定義求出∠AOB的度數(shù),由勾股定理求出OF的長,根據(jù)四邊形ABCD是等腰梯形求出AE的長,再由S=S梯形ABCD-(S扇OAB-S△OAB)即可得出結論.
解答:解:如圖,連接AO、BO.過點A作AE⊥DC于點E,過點O作ON⊥DC于點N,ON交⊙O于點M,交AB于點F.則OF⊥AB.
∵OA=OB=5m,AB=8m,OM是半徑,OM⊥AB,
∴AF=BF=AB=4(m),∠AOB=2∠AOF,
在Rt△AOF中,sin∠AOF==0.8=sin53°,
∴∠AOF=53°,則∠AOB=106°,
∵OF==3(m),由題意得:MN=1m,
∴FN=OM-OF+MN=3(m),
∵四邊形ABCD是等腰梯形,AE⊥DC,F(xiàn)N⊥AB,
∴AE=FN=3m,DC=AB+2DE.
在Rt△ADE中,tan56°==
∴DE=2m,DC=12m.
∴S=S梯形ABCD-(S扇OAB-S△OAB)=(8+12)×3-(π×52-×8×3)≈20(m2).
答:U型槽的橫截面積約為20m2
點評:本題考查的是垂徑定理的應用及勾股定理,根據(jù)題意作出輔助線,構造出直角三角形及等腰梯形,再利用勾股定理進行求解是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•荊州)如圖所示為圓柱形大型儲油罐固定在U型槽上的橫截面圖.已知圖中ABCD為等腰梯形(AB∥DC),支點A與B相距8m,罐底最低點到地面CD距離為1m.設油罐橫截面圓心為O,半徑為5m,∠D=56°,求:U型槽的橫截面(陰影部分)的面積.(參考數(shù)據(jù):sin53°≈0.8,tan56°≈1.5,π≈3,結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(湖北荊門卷)數(shù)學(帶解析) 題型:解答題

如圖所示為圓柱形大型儲油罐固定在U型槽上的橫截面圖.已知圖中ABCD為等腰梯形(AB∥DC),支點A與B相距8m,罐底最低點到地面CD距離為1m.設油罐橫截面圓心為O,半徑為5m,∠D=56°,求:U型槽的橫截面(陰影部分)的面積.(參考數(shù)據(jù):sin53°≈0.8,tan56°≈1.5,π≈3,結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(湖北荊門卷)數(shù)學(解析版) 題型:解答題

如圖所示為圓柱形大型儲油罐固定在U型槽上的橫截面圖.已知圖中ABCD為等腰梯形(AB∥DC),支點A與B相距8m,罐底最低點到地面CD距離為1m.設油罐橫截面圓心為O,半徑為5m,∠D=56°,求:U型槽的橫截面(陰影部分)的面積.(參考數(shù)據(jù):sin53°≈0.8,tan56°≈1.5,π≈3,結果保留整數(shù))

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:湖北省中考真題 題型:解答題

如圖所示為圓柱形大型儲油罐固定在U型槽上的橫截面圖.已知圖中ABCD為等腰梯形(AB∥DC),支點A與B相距8m,罐底最低點到地面CD距離為1m.設油罐橫截面圓心為O,半徑為5m,∠D=56°,求:U型槽的橫截面(陰影部分)的面積.(參考數(shù)據(jù):sin53°≈0.8,tan56°≈1.5,π≈3,結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年上海市重點中學六校聯(lián)考九年級(上)月考數(shù)學試卷(10月份)(解析版) 題型:解答題

如圖所示為圓柱形大型儲油罐固定在U型槽上的橫截面圖.已知圖中ABCD為等腰梯形(AB∥DC),支點A與B相距8m,罐底最低點到地面CD距離為1m.設油罐橫截面圓心為O,半徑為5m,∠D=56°,求:U型槽的橫截面(陰影部分)的面積.(參考數(shù)據(jù):sin53°≈0.8,tan56°≈1.5,π≈3,結果保留整數(shù))

查看答案和解析>>

同步練習冊答案