【題目】如圖,平面直角坐標系中,點是直線上一動點,將點向右平移1個單位得到點,點,則的最小值為________.

【答案】

【解析】

D-1,0),作D點關于直線的對稱點E,連接OE,交直線于A,連接AD,ED,作ESx軸于S,根據(jù)題意OE就是OB+CB的最小值,由直線的解析式求得F的坐標,進而求得ED的長,從而求得OSES,然后根據(jù)勾股定理即可求得OE.

解:設D-1,0),作D點關于直線的對稱點E,連接OE,交直線于A,連接AD,ED,作ESx軸于S,
ABDC,且AB=OD=OC=1,
∴四邊形ABOD和四邊形ABCO是平行四邊形,
AD=OB,OA=BC,
AD+OA=OB+BC,
AE=AD
AE+OA=OB+BC,
OE=OB+BC
OB+CB的最小值為OE,
可知∠AFO=30°,F-4,0),
FD=3,∠FDG=60°,
DG=DF=,

DE=2DG=3,
ES=DE=DS=DE=,

OS=

OE=,

OB+CB的最小值為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,CD的右側,BE平分ABC,DE平分ADC,BE、DE所在直線交于點E,ADC=70°.

(1)EDC的度數(shù);

(2)ABC=n°,BED的度數(shù)(用含n的代數(shù)式表示);

(3)將線段BC沿DC方向平移,使得點B在點A的右側,其他條件不變,畫出圖形并判斷BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:

(概念理解)

在一個三角形中,如果一個角的度數(shù)是另一個角度數(shù)的 4 倍,那么這樣的三角形我們稱之為“完美三角形”.如:三個內(nèi)角分別為 130°,40°,10°的三角形是“完美三角形”.

(簡單應用)

如圖 1,∠MON=72°,在射線OM上找一點A,過點AABOM ON于點B,以A為端點作射線AD,交線段OB 于點C(點 C不與 O,B重合)

1)∠ABO ,△AOB__________(填“是”或“不是”)“完美三角形”;

2)若∠ACB90°,求證:△AOC是“完美三角形”.

(應用拓展)

如圖 2,點D在△ABC 的邊AB上,連接DC,作∠ADC的平分線交AC于點E,在DC上取點F,使,.若△BCD是“完美三角形”, 求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,對角線ACBD相交于O,∠AOB60度,AC10,(1)求矩形較短邊的長.

2)矩形較長邊的長

3)矩形的面積

如果把本題改為:矩形ABCD中,對角線ACBD相交于O,∠AOB60度,AB4,你能求出這個矩形的面積嗎?試寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與坐標軸分別交于,兩點,以線段為邊,在第一象限內(nèi)作正方形,將正方形沿軸負方向,平移個單位長度,使點恰好落在直線上,則的值為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC的平分線交△ABC的外接圓于點D,∠ABC的平分線交AD于點E,
(1)求證:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形內(nèi)有一點滿足,.連接、.

1)求證:;

2)求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD的四個頂點的坐標分別是A(1,3)、B(2,2)、C(2,1),D(3,3).
(1)以原點O為位似中心,相似比為2,將圖形放大,畫出符合要求的位似四邊形;
(2)在(1)的前提下,寫出點A的對應點坐標A′,并說明點A與點A′坐標的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=∠ACB。

1)若DBC邊上一點,E為直線AC上一點,且∠ADE=∠AED.求證:∠BAD=2CDE;

2)如圖,若DBC的反向延長線上,其它條件不變,(1)中的結論是否仍然成立?證明你的結論.

查看答案和解析>>

同步練習冊答案