已知:如圖,A(a,m),B(2a,n)是反比例函數(shù)圖象上的兩點,分別過A,B兩點作x軸的垂線,垂足分別為C、D,連接OA,OB.
(1)求證:S△AOC=S△OBD;
(2)若A,B兩點又在一次函數(shù)的圖象上,且S△OAB=8,求a的值.

【答案】分析:(1)根據(jù)反比例函數(shù)圖象上點得坐標特點得到am=k,2an=k,再根據(jù)三角形面積公式得到S△AOC=OC•AC=a×m=k,S△BOD=OD×BD=×2a×n=k,即可得到結論;
(2)先把A、B兩點坐標代入一次函數(shù)解析式,可以用a表示為A點坐標(a,-a+b),B點坐標(2a,-a+b),再利用A、B兩點在反比例函數(shù)圖象上,則k=a•(-a+b)=2a•(-a+b),于是解得b=4a,然后用a表示一次函數(shù)與坐標軸兩交點坐標F(0,4a),E(3a,0),然后利用S△AOB=S△E0F-S△EOA-S△BOF=8和三角形面積公式得到關于a的方程,再解方程可得a的值.
解答:(1)證明:∵A(a,m),B(2a,n)是反比例函數(shù)上,且AC⊥OC,BD⊥OD,
∴am=k,2an=k,
∵S△AOC=OC•AC=a×m=k,S△BOD=OD×BD=×2a×n=k,
∴S△AOC=S△OBD

(2)解:∵A,B兩點在一次函數(shù)y=-x上,
∴A點坐標可表示為(a,-a+b),B點坐標表示為(2a,-a+b),
∵A,B在是反比例函數(shù)上,
∴a•(-a+b)=2a•(-a+b),解得b=4a,
∴A點坐標為(a,a),B點坐標表示為(2a,a),
∵A(a,m),B(2a,n)是反比例函數(shù)上,
∴一次函數(shù)與x軸,y軸的交點F(0,4a),E(3a,0),如圖,
∵S△AOB=S△E0F-S△FOA-S△BOE=8,
•3a•4a-4a•a-•3a•a=8,
∴a2=4,
∴a=±2(負號舍去)
∴a=2.
點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:反比例函數(shù)圖象與一次函數(shù)圖象的交點坐標滿足兩個函數(shù)的解析式.也考查了三角形面積公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

2007年5月17日我市榮獲“國家衛(wèi)生城市稱號”.在“創(chuàng)衛(wèi)”過程中,要在東西方向M、N兩地之間修建一條道路.已知:如圖C點周圍180m范圍內(nèi)為文物保護區(qū),在MN上點A處測得C在A的北偏東60°方向上,從A向東走500m到達B處精英家教網(wǎng),測得C在B的北偏西45°方向上.
(1)NM是否穿過文物保護區(qū)?為什么?(參考數(shù)據(jù):
3
≈1.732)
(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工作需要多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、已知,如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于A、B兩點,A點坐標為(2,1),分別以A、B為圓心的圓與x軸相切,則圖中兩個陰影部分面積的和為
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,∠1=∠2,
 
.求證:AB=AC.
(1)在橫線上添加一個使命題的結論成立的條件;
(2)寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,直角坐標系內(nèi)的矩形ABCD,頂點A的坐標為(0,3),BC=2AB,P為
AD邊上一動點(與點A、D不重合),以點P為圓心作⊙P與對角線AC相切于點F,過P、F作直線L,交BC邊于點E,當點P運動到點P1位置時,直線L恰好經(jīng)過點B,此時直線的解析式是y=2x+1,
(Ⅰ)求BC、AP1的長;
(Ⅱ)設AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關系式,寫出自變量m的取值范圍;
(Ⅲ)以點E為圓心作⊙E與x軸相切,探究并猜想:⊙P和⊙E有哪幾種位置關系,并求出AP相應的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=-
3
3
x2-
2
3
3
x+
3
的圖象與x軸分別交于A,B兩點,與y軸交精英家教網(wǎng)于C點,⊙M經(jīng)過原點O及點A、C,點D是劣弧
OA
上一動點(D點與A、O不重合).
(1)求拋物線的頂點E的坐標;
(2)求⊙M的面積;
(3)連CD交AO于點F,延長CD至G,使FG=2,試探究,當點D運動到何處時,直線GA與⊙M相切,并請說明理由.

查看答案和解析>>

同步練習冊答案