如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)在網(wǎng)格中作AD∥BC(D為格點),連接CD,則線段CD的長為______
【答案】分析:(1)畫出相應線段,CD為直角邊為1,2的直角三角形的斜邊的長,利用勾股定理求解即可;
(2)畫出相應圖形,易得除B,C外有三點在圓上;
(3)易得AD∥BC,AD=BC,可得四邊形ABCD是平行四邊形.
解答:解:(1)CD==;
(2)3;
(3)∵AD=BC==5,AD∥BC,
∴四邊形ABCD是平行四邊形.

點評:考查了勾股定理的運用及一組對邊平行且相等的四邊形是平行四邊形的判定.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•重慶)如圖,在邊長為1的小正方形組成的10×10網(wǎng)格中(我們把組成網(wǎng)格的小正方形的頂點稱為格點),四邊形ABCD在直線l的左側(cè),其四個頂點A、B、C、D分別在網(wǎng)格的格點上.
(1)請你在所給的網(wǎng)格中畫出四邊形A′B′C′D′,使四邊形A′B′C′D′和四邊形ABCD關于直線l對稱,其中點A′、B′、C′、D′分別是點A、B、C、D的對稱點;
(2)在(1)的條件下,結合你所畫的圖形,直接寫出線段A′B′的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•潮陽區(qū)模擬)如圖,在邊長為1的小正方形組成的網(wǎng)格中,兩個直角三角形頂點均在格點上,以圖中的點O為位似中心在網(wǎng)格圖中作位似變換,分別將兩個直角三角形縮小為原來的一半,(要求縮小的圖形與原圖形在點O兩側(cè))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•泰寧縣質(zhì)檢)如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)用簽字筆畫AD∥BC(D為格點),連接CD.
(2)線段AB的長為
5
5
,△ABC的面積為
6
6

(3)若E為BC中點,則tan∠CAE的值是
1
2
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•菏澤)如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC和△DEF的頂點都在格點上,P1,P2,P3,P4,P5是△DEF邊上的5個格點,請按要求完成下列各題:
(1)試證明三角形△ABC為直角三角形;
(2)判斷△ABC和△DEF是否相似,并說明理由;
(3)畫一個三角形,使它的三個頂點為P1,P2,P3,P4,P5中的3個格點并且與△ABC相似(要求:不寫作法與證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在邊長為1的小正方形組成的網(wǎng)格中,△AOB的三個頂點均在格點上,點A、B的坐標分別為(3,2)、(1,3).△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1
(1)在網(wǎng)格中畫出△A1OB1,并標上字母;
(2)點A關于O點中心對稱的點的坐標為
(-3,-2)
(-3,-2)
;
(3)點A1的坐標為
(-2,3)
(-2,3)

(4)在旋轉(zhuǎn)過程中,點B經(jīng)過的路徑為弧BB1,那么弧BB1的長為
10
2
π
10
2
π

查看答案和解析>>

同步練習冊答案