【題目】已知關(guān)于x的二次函數(shù)y2x2+bx+c.當(dāng)x1時(shí),y4;當(dāng)x=﹣2y=﹣5

1)求y關(guān)于x的二次函數(shù)的解析式;

2)在直角坐標(biāo)系中把(1)中的圖象拋物線平移到頂點(diǎn)與原點(diǎn)重合,應(yīng)該怎樣平移?

【答案】(1) :y=2x2+5x﹣3;(2)見解析.

【解析】

1)利用待定系數(shù)法求函數(shù)解析式即可;

2)將(1)中求得的拋物線解析式轉(zhuǎn)化為頂點(diǎn)式,結(jié)合平移規(guī)律解答即可.

解:(1)把x1時(shí),y4;x=﹣2y=﹣5分別代入得到:

,

解得

y關(guān)于x的二次函數(shù)的解析式為:y2x2+5x3;

2)由(1)知,該拋物線的解析式為:y2x2+5x3,即y2x2

則其頂點(diǎn)坐標(biāo)是(,).

所以將該(1)中的圖象拋物線向左平移個(gè)單位,再向下平移個(gè)單位后,其頂點(diǎn)與原點(diǎn)重合.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸分別于點(diǎn)A(﹣3,0),B1,0),交y軸正半軸于點(diǎn)D,拋物線頂點(diǎn)為C.下列結(jié)論

2ab0

a+b+c0;

③當(dāng)m≠1時(shí),abam2+bm

④當(dāng)ABC是等腰直角三角形時(shí),a

⑤若D0,3),則拋物線的對稱軸直線x=﹣1上的動點(diǎn)PB、D兩點(diǎn)圍成的PBD周長最小值為3,其中,正確的個(gè)數(shù)為( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=ax+b的圖象上有兩點(diǎn)A、B,它們的橫坐標(biāo)分別是3,-1,若二次函數(shù)y=x2的圖象經(jīng)過A、B兩點(diǎn)

1請求出一次函數(shù)的表達(dá)式;

2設(shè)二次函數(shù)的頂點(diǎn)為C,求ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是一塊邊長為4米的正方形苗圃,園林部門將其改造為矩形的形狀,其中點(diǎn)邊上,點(diǎn)的延長線上, 設(shè)的長為米,改造后苗圃的面積為平方米.

(1) 之間的函數(shù)關(guān)系式為 (不需寫自變量的取值范圍);

(2)根據(jù)改造方案,改造后的矩形苗圃的面積與原正方形苗圃的面積相等,請問此時(shí)的長為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y1ax2+bx+ca0)與一次函數(shù)y2kx+m的圖象相交于A(﹣1,4)、B4,2)兩點(diǎn),則能使關(guān)于x的不等式ax2+bkx+cm0成立的x的取值范圍是( 。

A.2x4B.1x4C.x<﹣1x4D.x4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙與菱形在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)軸上,且點(diǎn)在點(diǎn)的右側(cè).

)求菱形的周長.

)若⊙沿軸向右以每秒個(gè)單位長度的速度平移,菱形沿軸向左以每秒個(gè)單位長度的速度平移,設(shè)菱形移動的時(shí)間為(秒),當(dāng)⊙相切,且切點(diǎn)為的中點(diǎn)時(shí),連接,求的值及的度數(shù).

)在()的條件下,當(dāng)點(diǎn)所在的直線的距離為時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB6,AC3,∠BAC60°,為⊙O上的一段弧,且∠BOC60°,分別在、線段ABAC上選取點(diǎn)P、E、F,則PEEFFP的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A﹣10),B5,0),C0,)三點(diǎn).

1)求拋物線的解析式;

2)在拋物線的對稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);

3)點(diǎn)Mx軸上一動點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,CM,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖①,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA2,PB=,PC1,求∠BPC的度數(shù)和等邊三角形ABC的邊長.

李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖②),連接PP′,可得△PPB是等邊三角形,而△PPA又是直角三角形(由勾股定理的逆定理可證),可得∠APB °,所以∠BPC=∠APB °,還可證得△ABP是直角三角形,進(jìn)而求出等邊三角形ABC的邊長為 ,問題得到解決.

1)根據(jù)李明同學(xué)的思路填空:∠APB °,∠BPC=∠APB °,等邊三角形ABC的邊長為

2)探究并解決下列問題:如圖③,在正方形ABCD內(nèi)有一點(diǎn)P,且PA,PB,PC1.求∠BPC的度數(shù)和正方形ABCD的邊長.

查看答案和解析>>

同步練習(xí)冊答案