【題目】已知關(guān)于x的二次函數(shù)y=2x2+bx+c.當(dāng)x=1時(shí),y=4;當(dāng)x=﹣2,y=﹣5.
(1)求y關(guān)于x的二次函數(shù)的解析式;
(2)在直角坐標(biāo)系中把(1)中的圖象拋物線平移到頂點(diǎn)與原點(diǎn)重合,應(yīng)該怎樣平移?
【答案】(1) :y=2x2+5x﹣3;(2)見解析.
【解析】
(1)利用待定系數(shù)法求函數(shù)解析式即可;
(2)將(1)中求得的拋物線解析式轉(zhuǎn)化為頂點(diǎn)式,結(jié)合平移規(guī)律解答即可.
解:(1)把x=1時(shí),y=4;x=﹣2,y=﹣5分別代入得到:
,
解得.
故y關(guān)于x的二次函數(shù)的解析式為:y=2x2+5x﹣3;
(2)由(1)知,該拋物線的解析式為:y=2x2+5x﹣3,即y=2(x)2.
則其頂點(diǎn)坐標(biāo)是(,).
所以將該(1)中的圖象拋物線向左平移個(gè)單位,再向下平移個(gè)單位后,其頂點(diǎn)與原點(diǎn)重合.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸分別于點(diǎn)A(﹣3,0),B(1,0),交y軸正半軸于點(diǎn)D,拋物線頂點(diǎn)為C.下列結(jié)論
①2a﹣b=0;
②a+b+c=0;
③當(dāng)m≠﹣1時(shí),a﹣b>am2+bm;
④當(dāng)△ABC是等腰直角三角形時(shí),a=;
⑤若D(0,3),則拋物線的對稱軸直線x=﹣1上的動點(diǎn)P與B、D兩點(diǎn)圍成的△PBD周長最小值為3,其中,正確的個(gè)數(shù)為( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=ax+b的圖象上有兩點(diǎn)A、B,它們的橫坐標(biāo)分別是3,-1,若二次函數(shù)y=x2的圖象經(jīng)過A、B兩點(diǎn).
(1)請求出一次函數(shù)的表達(dá)式;
(2)設(shè)二次函數(shù)的頂點(diǎn)為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是一塊邊長為4米的正方形苗圃,園林部門將其改造為矩形的形狀,其中點(diǎn)在邊上,點(diǎn)在的延長線上, 設(shè)的長為米,改造后苗圃的面積為平方米.
(1) 與之間的函數(shù)關(guān)系式為 (不需寫自變量的取值范圍);
(2)根據(jù)改造方案,改造后的矩形苗圃的面積與原正方形苗圃的面積相等,請問此時(shí)的長為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=ax2+bx+c(a>0)與一次函數(shù)y2=kx+m的圖象相交于A(﹣1,4)、B(4,2)兩點(diǎn),則能使關(guān)于x的不等式ax2+(b﹣k)x+c﹣m>0成立的x的取值范圍是( 。
A.2<x<4B.﹣1<x<4C.x<﹣1或x>4D.x>4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙與菱形在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)在軸上,且點(diǎn)在點(diǎn)的右側(cè).
()求菱形的周長.
()若⊙沿軸向右以每秒個(gè)單位長度的速度平移,菱形沿軸向左以每秒個(gè)單位長度的速度平移,設(shè)菱形移動的時(shí)間為(秒),當(dāng)⊙與相切,且切點(diǎn)為的中點(diǎn)時(shí),連接,求的值及的度數(shù).
()在()的條件下,當(dāng)點(diǎn)與所在的直線的距離為時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB=6,AC=3,∠BAC=60°,為⊙O上的一段弧,且∠BOC=60°,分別在、線段AB和AC上選取點(diǎn)P、E、F,則PE+EF+FP的最小值為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖①,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1,求∠BPC的度數(shù)和等邊三角形ABC的邊長.
李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖②),連接PP′,可得△P′PB是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),可得∠AP′B= °,所以∠BPC=∠AP′B= °,還可證得△ABP是直角三角形,進(jìn)而求出等邊三角形ABC的邊長為 ,問題得到解決.
(1)根據(jù)李明同學(xué)的思路填空:∠AP′B= °,∠BPC=∠AP′B= °,等邊三角形ABC的邊長為 .
(2)探究并解決下列問題:如圖③,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,PB=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com