(2006•山西)如圖所示,在平面直角坐標系中有點A(-1,0),點B(4,0),以AB為直徑的半圓交y軸正半軸于點C.
(1)求點C的坐標;
(2)求過A,B,C三點的拋物線的解析式;
(3)在(2)的條件下,若在拋物線上有一點D,使四邊形BOCD為直角梯形,求直線BD的解析式;
(4)設點M是拋物線上任意一點,過點M作MN⊥y軸,交y軸于點N.若在線段AB上有且只有一點P,使∠MPN為直角,求點M的坐標.

【答案】分析:(1)已知了A、B的坐標,即可求出OA、OB的長,根據相交弦定理的推論即可求出OC的長,也就求出了C點的坐標.
(2)已知了三點的坐標,可用待定系數(shù)法求拋物線的解析式.
(3)要使四邊形BOCD為直角梯形,那么CD∥OB,直線CD與拋物線的交點即為D點.根據拋物線的對稱性即可得出D點的坐標.然后用待定系數(shù)法求出直線BD的解析式.
(4)已知在線段AB上有且只有一點使∠MPN為直角,如果以MN為直徑作圓,那么P點必為圓和線段AB的切點.而MN∥x軸,因此三角形MPN是等腰直角三角形,因此M點的橫坐標為縱坐標絕對值的2倍,然后分M在x軸上方或x軸下方兩種情況分別代入拋物線的解析式中進行求解即可.
解答:解:(1)C點的坐標為(0,2);理由如下:
如圖,連接AC,CB.依相交弦定理的推論可得OC2=OA•OB,
解得OC=2.
故C點的坐標為(0,2).

(2)設拋物線解析式為y=a(x+1)(x-4).
把點C(0,2)的坐標代入上式得a=-
∴拋物線解析式是y=-x2+x+2.

(3)如圖,過點C作CD∥OB,交拋物線于點D,則四邊形BOCD為直角梯形.
由(2)知拋物線的對稱軸是x=,
∴點D的坐標為(3,2).
設過點B,點D的解析式是y=kx+b.
把點B(4,0),點D(3,2)的坐標代入上式得
解之得
∴直線BD的解析式是y=-2x+8.

(4)解:依題意可知,以MN為直徑的半圓與線段AB相切于點P.
設點M的坐標為(m,n).
①當點M在第一或第三象限時,m=2n.
把點M的坐標(2n,n)代入拋物線的解析式得n2-n-1=0,
解之得n=
∴點M的坐標是(1+,)或(1-,).
②當點M在第二或第四象限時,m=-2n.
把點M的坐標(-2n,n)代入拋物線的解析式得n2+2n-1=0,
解之得
∴點M的坐標是(2-2,-1+)或(2+2,-1-).
綜上,滿足條件的點M的坐標是(1+,),(1-),
(2-2,-1+),(2+2,-1-).
點評:本題考查了相交弦定理、二次函數(shù)解析式的確定、梯形的判定和性質、圓周角定理等知識點,綜合性強,考查學生分類討論,數(shù)形結合的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年山西省中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•山西)如圖所示,在平面直角坐標系中有點A(-1,0),點B(4,0),以AB為直徑的半圓交y軸正半軸于點C.
(1)求點C的坐標;
(2)求過A,B,C三點的拋物線的解析式;
(3)在(2)的條件下,若在拋物線上有一點D,使四邊形BOCD為直角梯形,求直線BD的解析式;
(4)設點M是拋物線上任意一點,過點M作MN⊥y軸,交y軸于點N.若在線段AB上有且只有一點P,使∠MPN為直角,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山西省中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•山西)如圖1,2所示,將一張長方形的紙片對折兩次后,沿圖3中的虛線AB剪下,將△AOB完全展開.
(1)畫出展開圖形,判斷其形狀,并證明你的結論;
(2)若按上述步驟操作,展開圖形是正方形時,請寫出△AOB應滿足的條件.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山西省中考數(shù)學試卷(大綱卷)(解析版) 題型:填空題

(2006•山西)如圖,在正方形ABCD中,點E是BC邊上一點,且BE:EC=2:1,AE與BD交于點F,則△AFD與四邊形DEFC的面積之比是   

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山西省中考數(shù)學試卷(大綱卷)(解析版) 題型:填空題

(2006•山西)如圖所示,要把1000個形狀是圓錐體的實心積木的表面刷成紅色,每平方厘米需油漆約0.0002升,全部刷完共需油漆約    升.(π取3)

查看答案和解析>>

同步練習冊答案