【題目】已知直線l1∥l2∥l3 , 等腰直角△ABC的三個頂點(diǎn)A,B,C分別在l1 , l2 , l3上,若∠ACB=90°,l1 , l2的距離為1,l2 , l3的距離為3,求:
(1)線段AB的長;
(2) 的值.

【答案】
(1)解:

過A作AN⊥直線l3于N,過B作BM⊥l3于M,

則∠BMC=∠ANC=∠BCA=90°,

∴∠BCM+∠MBC=90°,∠BCM+∠ACN=90°,

∴∠MBC=∠ACN,

在△BMC和△CNA中

∴△BMC≌△CNA,

∴BM=CN,AN=CM,

∵l1,l2的距離為1,l2,l3的距離為3,

∴BM=CN=3,CM=AN=1+3=4,

在Rt△BMC中,由勾股定理得:BC=AC= =5,

在Rt△ACB中,由勾股定理得:AB= =5


(2)解:∵直線l2∥直線l3

∴∠DBC=∠BCM,

∵∠BCD=∠BMC=90°,

∴△BCD∽△CMB,

=

= ,

∴BD= ,

∵AB=5 ,

= =


【解析】(1)過A作AN⊥直線l3于N,過B作BM⊥l3于M,根據(jù)全等三角形的判定得出△BMC≌△CNA,根據(jù)全等得出BM=CN,AN=CM,求出BM和CM,根據(jù)勾股定理求出BC、AC,再求出AB即可;(2)根據(jù)平行線性質(zhì)得出∠DBC=∠BCM,根據(jù)相似三角形的判定得出△BCD∽△CMB,得出比例式,求出BD,即可求出答案.
【考點(diǎn)精析】本題主要考查了等腰直角三角形和相似三角形的判定與性質(zhì)的相關(guān)知識點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列敘述中正確的是(
A.若a,b,c∈R,則“ax2+bx+c≥0”的充分條件是“b2﹣4ac≤0”
B.若a,b,c∈R,則“ab2>cb2”的充要條件是“a>c”
C.命題“對任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”
D.l是一條直線,α,β是兩個不同的平面,若l⊥α,l⊥β,則α∥β

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程3x2+mx﹣8=0有一個根是 ,求另一個根及m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知平行四邊形ABCD的三個頂點(diǎn)坐標(biāo)分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則關(guān)于點(diǎn)D的說法正確的是( )
甲:點(diǎn)D在第一象限
乙:點(diǎn)D與點(diǎn)A關(guān)于原點(diǎn)對稱
丙:點(diǎn)D的坐標(biāo)是(﹣2,1)
。狐c(diǎn)D與原點(diǎn)距離是
A.甲乙
B.丙丁
C.甲丁
D.乙丙

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在元旦來臨之際,騰飛中學(xué)舉行了隆重的慶;顒,在校圖書館展開了書法、國學(xué)誦讀、演講、征文四個比賽項目(每人只參加一個項目),“希望班”全班同學(xué)都參加了比賽,為了解這個班同學(xué)參加各項比賽的情況,收集整理數(shù)據(jù)后,繪制以下不完整的折線統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2),根據(jù)圖表中的信息解答下列各題:
(1)請求出“希望班”全班人數(shù);
(2)請把折線統(tǒng)計圖補(bǔ)充完整;
(3)歡歡和樂樂參加了比賽,請用“列表法”或“畫樹狀圖法”求出他們參加的比賽項目相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過原點(diǎn)O,且與直線y=x﹣2交于B,C兩點(diǎn).

(1)求拋物線的頂點(diǎn)A的坐標(biāo)及點(diǎn)B,C的坐標(biāo);
(2)求證:∠ABC=90°;
(3)在直線BC上方的拋物線上是否存在點(diǎn)P,使△PBC的面積最大?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(4)若點(diǎn)N為x軸上的一個動點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當(dāng)點(diǎn)H與點(diǎn)A重合時,EF=2
以上結(jié)論中,你認(rèn)為正確的有 . (填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組﹣2≤x+1<1的解集,在數(shù)軸上表示正確的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,10個邊長為1的正方形如圖擺放在平面直角坐標(biāo)系中,經(jīng)過原點(diǎn)的一條直線l將這10個正方形分成面積相等的兩部分,則該直線l的解析式為

查看答案和解析>>

同步練習(xí)冊答案