如圖,直線l1∥l2,∠1=40°,∠2=65°,則∠3=( )

A.65°
B.70°
C.75°
D.85°
【答案】分析:先根據(jù)平行線的性質(zhì)得出∠ABC的度數(shù),再由對頂角相等求出∠BAC的度數(shù),根據(jù)三角形內(nèi)角和定理即可求出∠3的度數(shù).
解答:解:∵直線l1∥l2,∠1=40°,
∴∠ABC=∠1=40°,
∵∠2=65°,
∴∠BAC=∠2=45°,
∴∠3=180°-∠ABC-∠BAC=180°-40°-65°=75°.
故選C.
點評:本題考查的是平行線的性質(zhì),解答此類題目時往往用到三角形內(nèi)角和等于180°這一隱藏條件.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、如圖,直線L1∥L2,AB⊥CD,∠1=34°,那么∠2的度數(shù)是
56
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線l1∥l2,⊙O與l1和l2分別相切于點A和點B.點M和點N分別是l1和l2上的動點,MN沿l1和l2平移.⊙O的半徑為1,∠1=60°.下列結(jié)論錯誤的是( 。
A、MN=
4
3
3
B、若MN與⊙O相切,則AM=
3
C、若∠MON=90°,則MN與⊙O相切
D、l1和l2的距離為2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線l1∥l2,AF:FB=2:3,BC:CD=2:1,則AE:EC是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,直線l1∥l2,∠1=55°,∠2=65°,則∠3=
60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•無錫二模)如圖,直線L1∥L2,AB⊥CD,∠1=34°,那么∠2的度數(shù)是
56
56
度.

查看答案和解析>>

同步練習冊答案