銳角△ABC中,BC=6,,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0).
(1)求△ABC中邊BC上高AD;
(2)當x為何值時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?
(1)4;(2)2.4(或);(3)3,6.
解析試題分析:(1)本題利用矩形的性質(zhì)和相似三角形的性質(zhì),根據(jù)MN∥BC,得△AMN∽△ABC,求出△ABC中邊BC上高AD的長度.
(2)因為正方形的位置在變化,但是△AMN∽△ABC沒有改變,利用相似三角形對應邊上高的比等于相似比,得出等量關系,代入解析式,
(3)用含x的式子表示矩形MEFN邊長,從而求出面積的表達式.
試題解析:(1)由BC=6,S△ABC=12,得AD=4;
(2)當PQ恰好落在邊BC上時,
∵MN∥BC,∴△AMN∽△ABC.
∴,
即
解得,x=2.4(或)
∴當x=2.4(或)時正方形MPQN的邊P恰好落在BC邊上;
(3)設MP、NQ分別與BC相交于點E、F,
設HD=a,則AH=4-a,
由 ,
得,
解得,,
∵矩形MEFN的面積=MN×HD,
∴y=x()= = (0<x≤6).
當x=3時,y最大為6.
考點: 1.二次函數(shù)綜合題;2.矩形的性質(zhì);3.相似三角形的判定與性質(zhì).
科目:初中數(shù)學 來源: 題型:解答題
已知直線y=kx-3與x軸交于點A(4,0),與y軸交于點C,拋物線經(jīng)過點A和點C,動點P在x軸上以每秒1個長度單位的速度由拋物線與x軸的另一個交點B向點A運動,點Q由點C沿線段CA向點A運動且速度是點P運動速度的2倍.
(1)求此拋物線的解析式和直線的解析式;
(2)如果點P和點Q同時出發(fā),運動時間為t(秒),試問當t為何值時,以A、P、Q為頂點的三角形與△AOC相似;
(3)在直線CA上方的拋物線上是否存在一點D,使得△ACD的面積最大.若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知二次函數(shù).
(1)求拋物線頂點M的坐標;
(2)設拋物線與x軸交于A,B兩點,與y軸交于C點,求A,B,C的坐標(點A在點B的左側),并畫出函數(shù)圖象的大致示意圖;
(3)根據(jù)圖象,求不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
許多橋梁都采用拋物線型設計,小明將他家鄉(xiāng)的彩虹橋按比例縮小后,繪成如下的示意圖,圖中的三條拋物線分別表示橋上的三條鋼梁,x軸表示橋面,y軸經(jīng)過中間拋物線的最高點,左右兩條拋物線關于y軸對稱.經(jīng)過測算,中間拋物線的解析式為:y=-x2+10,并且BD=CD.
(1)求鋼梁最高點離橋面的高度OE的長;
(2)求橋上三條鋼梁的總跨度AB的長;
(3)若拉桿DE∥拉桿BN,求右側拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線與x軸交于點A、B,且A點的坐標為(1,0),與y軸交于點C(0,1).
(1)求拋物線的解析式,并求出點B坐標;
(2)過點B作BD∥CA交拋物線于點D,連接BC、CA、AD,求四邊形ABCD的周長;(結果保留根號)
(3)在x軸上方的拋物線上是否存在點P,過點P作PE垂直于x軸,垂足為點E,使以B、P、E為頂點的三角形與△CBD相似?若存在請求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
拋物線y=-x2+(m-1)x+m與y軸交于點(0,3).
(1)求拋物線的解析式;
(2)求拋物線與x軸的交點坐標;
(3)畫出這條拋物線大致圖象;
(4)根據(jù)圖象回答:
①當x取什么值時,y>0 ?
②當x取什么值時,y的值隨x的增大而減小?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y件與銷售單價x元符合一次函數(shù)y=kx+b,且x=65時,y="55" 當x=75時,y=45.
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W元與銷售單價x之間的關系式;銷售單間定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價x的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,直線y=3x和y=2x分別與直線x=2相交于點A、B,將拋物線y=x2沿線段OB移動,使其頂點始終在線段OB上,拋物線與直線x=2相交于點C,設△AOC的面積為S,求S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知點A (2,4) 和點B (1,0)都在拋物線上.
(1)求m、n;
(2)向右平移上述拋物線,記平移后點A的對應點為A′,點B的對應點為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達式;
(3)記平移后拋物線的對稱軸與直線AB′ 的交點為C,試在x軸上找一個點D,使得以點B′、C、D為頂點的三角形與△ABC相似.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com