【題目】如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長.
【答案】
(1)證明:連接OB,如圖所示:
∵E是弦BD的中點,
∴BE=DE,OE⊥BD, = ,
∴∠BOE=∠A,∠OBE+∠BOE=90°,
∵∠DBC=∠A,
∴∠BOE=∠DBC,
∴∠OBE+∠DBC=90°,
∴∠OBC=90°,
即BC⊥OB,
∴BC是⊙O的切線;
(2)解:∵OB=6,BC=8,BC⊥OB,
∴OC= =10,
∵△OBC的面積= OCBE= OBBC,
∴BE= = =4.8,
∴BD=2BE=9.6,
即弦BD的長為9.6
【解析】(1)連接OB,由垂徑定理的推論得出BE=DE,OE⊥BD, = ,由圓周角定理得出∠BOE=∠A,證出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面積求出BE,即可得出弦BD的長.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.圓內(nèi)接正六邊形的邊長與該圓的半徑相等
B.在平面直角坐標系中,不同的坐標可以表示同一點
C.一元二次方程ax2+bx+c=0(a≠0)一定有實數(shù)根
D.將△ABC繞A點按順時針方向旋轉(zhuǎn)60°得△ADE,則△ABC與△ADE不全等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:
(1)2017年“五一”期間,該市周邊景點共接待游客萬人,扇形統(tǒng)計圖中A景點所對應(yīng)的圓心角的度數(shù)是 , 并補全條形統(tǒng)計圖.
(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?
(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標;
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,3),與x軸的一個交點是B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論: ①abc>0;②方程ax2+bx+c=3有兩個相等的實數(shù)根;③拋物線與x軸的另一個交點是(﹣1,0);④當1<x<4時,有y2>y1;⑤x(ax+b)≤a+b,其中正確的結(jié)論是 . (只填寫序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】多多班長統(tǒng)計去年1~8月“書香校園”活動中全班同學的課外閱讀數(shù)量(單位:本),繪制了如圖折線統(tǒng)計圖,下列說法正確的是( )
A.極差是47
B.眾數(shù)是42
C.中位數(shù)是58
D.每月閱讀數(shù)量超過40的有4個月
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,將三角形CDE繞點C逆時針旋轉(zhuǎn)75°,點E的對應(yīng)點N恰好落在OA上,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標有數(shù)字﹣1,﹣2,﹣3,﹣4的小球,它們的形狀、大小、質(zhì)地等完全相同.小強先從盒子里隨機取出一個小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機取出一個小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小強、小華各取一次小球所確定的點(x,y)落在一次函數(shù)y=x﹣1圖象上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com