已知:如圖,菱形ABCD的邊長為3,延長AB到點E,使BE=2AB,連接EC并延長交AD的延長線于點F.求AF的長.

【答案】分析:首先由菱形的性質(zhì):DC∥AE,進而證明:△DFC∽△AFE,再利用相似三角形的性質(zhì)和已知條件即可求出DF的長,進而求出AF的長.
解答:解:∵四邊形ABCD是菱形,
∴DC∥AE,
∴△DFC∽△AFE,
,
∵BE=2AB,AB=3,
∴BE=6,AE=9,

∴DF=1.5,
∴AF=AD+DF=3+1.5=4.5.
點評:本題考查了菱形的性質(zhì),相似三角形的判定和性質(zhì),題目的難度不大,屬于基礎(chǔ)性題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知:如圖,菱形ABCD中,∠B=60°,AB=4,則以AC為邊長的正方形ACEF的周長為
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、已知:如圖,菱形ABCD的AB邊在射線AM上,AC為它的對角線,請用尺規(guī)把這個菱形補充完整.(保留作圖痕跡,不寫畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、已知:如圖,菱形ABCD中,E、F分別是AB、AD上的點,且AE=AF.
求證:CE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,菱形ABCD中,E、F分別是CD、CB上的點,且CE=CF;
(1)求證:△ABE≌△ADF.
(2)若菱形ABCD中,AB=4,∠C=120°,∠EAF=60°,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)已知:如圖,菱形ABCD中,過AD的中點E作AC的垂線EF,交AB于點M,交CB的延長線于點F.如果FB的長是2,求菱形ABCD的周長.

查看答案和解析>>

同步練習(xí)冊答案