【題目】如圖,以AB為直徑的⊙O是△ADC的外接圓,過(guò)點(diǎn)O作PO⊥AB,交AC于點(diǎn)E,PC的延長(zhǎng)線交AB的延長(zhǎng)線于點(diǎn)F,∠PEC=∠PCE.
(1)求證:FC為⊙O的切線;
(2)若△ADC是邊長(zhǎng)為a的等邊三角形,求AB的長(zhǎng).(用含a的代數(shù)式表示)

【答案】
(1)證明:連接OC.

∵OA=OC(⊙O的半徑),

∴∠EAO=∠ECO(等邊對(duì)等角).

∵PO⊥AB,∴∠EAO+∠AEO=90°(直角三角形中的兩個(gè)銳角互余).

∵∠PEC=∠PCE(已知),∠PEC=∠AEO(對(duì)頂角相等)

∴∠AEO=∠PCE(等量代換),

∴∠PCO=∠ECO+∠PCE=∠EAO+∠AEO=90°.即OC⊥FC,

∵點(diǎn)C在⊙O上,

∴FC為⊙O的切線


(2)解:連接BC.

∵AB是⊙O的直徑,∴∠ACB=90°.

∵△ADC是邊長(zhǎng)為a的等邊三角形,

∴∠ABC=∠D=60°,AC=a.

在Rt△ACB中,∵sin∠ABC=

∴AB= = a.


【解析】(1)連接OC.欲證FC為⊙O的切線,只需證明OC⊥FC即可;(2)連接BC.由等邊三角形的性質(zhì)、“同弧所對(duì)的圓周角相等”推知∠ABC=∠ADC=60°;然后在直角△ABC中利用正弦三角函數(shù)的定義來(lái)求AB線段的長(zhǎng)度.
【考點(diǎn)精析】掌握等邊三角形的性質(zhì)和切線的判定定理是解答本題的根本,需要知道等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC的斜邊AB與量角器的直徑恰好重合,B點(diǎn)與0刻度線的一端重合,∠ABC=40°,射線CD繞點(diǎn)C轉(zhuǎn)動(dòng),與量角器外沿交于點(diǎn)D,若射線CD將△ABC分割出以BC為邊的等腰三角形,則點(diǎn)D在量角器上對(duì)應(yīng)的度數(shù)是(

A.40°
B.70°
C.70°或80°
D.80°或140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三年級(jí)(1)班要舉行一場(chǎng)畢業(yè)聯(lián)歡會(huì).規(guī)定每個(gè)同學(xué)分別轉(zhuǎn)動(dòng)下圖中兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤A、B(轉(zhuǎn)盤A被均勻分成三等份.每份分別標(biāo)上1.2,3三個(gè)數(shù)宇.轉(zhuǎn)盤B被均勻分成二等份.每份分別標(biāo)上4,5兩個(gè)數(shù)字).若兩個(gè)轉(zhuǎn)盤停止后指針?biāo)竻^(qū)域的數(shù)字都為偶數(shù)(如果指針恰好指在分格線上.那么重轉(zhuǎn)直到指針指向某一數(shù)字所在區(qū)域?yàn)橹梗畡t這個(gè)同學(xué)要表演唱歌節(jié)目.請(qǐng)求出這個(gè)同學(xué)表演唱歌節(jié)目的概率(要求用畫樹狀圖或列表方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:|﹣4|+ cos45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2 ,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個(gè)一個(gè)地從1柱移到3柱上去,移動(dòng)過(guò)程不許以大盤壓小盤,不得把盤子放到柱子之外.移動(dòng)之日,喜馬拉雅山將變成一座金山.
設(shè)h(n)是把n個(gè)盤子從1柱移到3柱過(guò)程中移動(dòng)盤子之最少次數(shù)
n=1時(shí),h(1)=1;
n=2時(shí),小盤→2柱,大盤→3柱,小盤從2柱→3柱,完成.即h(2)=3;
n=3時(shí),小盤→3柱,中盤→2柱,小盤從3柱→2柱.[即用h(2)種方法把中、小兩盤移到2柱,大盤3柱;再用h(2)種方法把中、小兩盤從2柱3柱,完成;
我們沒(méi)有時(shí)間去移64個(gè)盤子,但你可由以上移動(dòng)過(guò)程的規(guī)律,計(jì)算n=6時(shí),h(6)=( )

A.11
B.31
C.63
D.127

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB為⊙O直徑,以O(shè)A為直徑作⊙M.過(guò)B作⊙M得切線BC,切點(diǎn)為C,交⊙O于E.
(1)在圖中過(guò)點(diǎn)B作⊙M作另一條切線BD,切點(diǎn)為點(diǎn)D(用尺規(guī)作圖,保留作圖痕跡,不寫作法,不用證明);
(2)證明:∠EAC=∠OCB;
(3)若AB=4,在圖2中過(guò)O作OP⊥AB交⊙O于P,交⊙M的切線BD于N,求BN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動(dòng)點(diǎn),連結(jié)AC并延長(zhǎng)交⊙O于D,過(guò)點(diǎn)D作圓的切線交OB的延長(zhǎng)線于E,已知OA=8.

(1)求證:∠ECD=∠EDC;
(2)若tanA= ,求DE長(zhǎng);
(3)當(dāng)∠A從15°增大到30°的過(guò)程中,求弦AD在圓內(nèi)掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過(guò)原點(diǎn)O,且與直線y=x﹣2交于B,C兩點(diǎn).

(1)求拋物線的頂點(diǎn)A的坐標(biāo)及點(diǎn)B,C的坐標(biāo);
(2)求證:∠ABC=90°;
(3)在直線BC上方的拋物線上是否存在點(diǎn)P,使△PBC的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案