探索研究
已知如圖,過O且半徑為5的⊙P交x的正半軸于點(diǎn)M(2m,0)、交y軸的負(fù)半軸于點(diǎn)D,弧OBM與⊙P的弧OAM關(guān)于x軸對(duì)稱,其中A、B、C是過點(diǎn)P且垂直于x軸的直線與兩弧及圓的交點(diǎn).點(diǎn)A到x軸的距離為h,以B為頂點(diǎn)且過D的拋物線交⊙P于點(diǎn)E.
(1)填空:B的坐標(biāo)為______,C的坐標(biāo)為______,D的坐標(biāo)為______;(可含m、h)
(2)當(dāng)m=4時(shí),
①求此拋物線的函數(shù)關(guān)系式并寫出點(diǎn)E的坐標(biāo);
②點(diǎn)Q在y軸上,且S△CEQ=S△CEP,求Q點(diǎn)坐標(biāo).
(3)是否存在實(shí)數(shù)m,使得以B、C、D、E為頂點(diǎn)的四邊形組成菱形?若存在,求m的值;若不存在,請(qǐng)說明理由.

解:(1)連接OP,PM,設(shè)AC與OM交于N,
∵⊙P的半徑為5,
∴AC=10,
∵點(diǎn)M(2m,0),
∴ON=MN=m,
∵點(diǎn)A到x軸的距離為h,
∴CN=AC-AN=10-h,
∴B(m,-h),C(m,h-10),
同理過P作OD的垂線,根據(jù)垂徑定理即可得出OD=2PN=5-h,因此D點(diǎn)的坐標(biāo)為(0,2h-10)
∴D(0,2h-10),
故答案為:(m,-h),(m,h-10),(0,2h-10);
(2)①設(shè)拋物線的解析式為y=a(x-4)2-2,已知拋物線過D點(diǎn),
因此-6=a(x-4)2-2,
解得a=-
∴拋物線的函數(shù)關(guān)系式為:,
根據(jù)對(duì)稱可知:E(8,-6);
②當(dāng)m=4時(shí),則C(4,-8),由①可知E的坐標(biāo)為(8,-6),
設(shè)直線CE的解析式為y=kx+b,

解得:
∴直線CE:,
∴直線CE與y軸交于點(diǎn)R(0,-10),
當(dāng)S△CEQ=S△CEP時(shí),則QR=PC,
∴Q(0,-5)或Q(0,-15);
(3)假設(shè)以B、C、D、E為頂點(diǎn)的四邊形組成菱形,則DE與BC互相垂直平分,設(shè)DE與BC相交于點(diǎn)F,于是BF=CF.
∴-h-2h+10=2h-10-h+10,即h=,
∴AB=5
∴B、P兩點(diǎn)重合,
=.:
分析:(1)可連接OP,PM,設(shè)AC與OM交于N,那么在直角三角形OPN中,ON=m,因此AN=BN=h,CN=AC-AN=10-h,所以B,C的坐標(biāo)分別為(m,-h),(m,h-10),
同理過P作OD的垂線,根據(jù)垂徑定理即可得出OD=2PN=5-h,因此D點(diǎn)的坐標(biāo)為(0,2h-10);
(2)①可用頂點(diǎn)式二次函數(shù)通式來設(shè)拋物線的解析式,然后將D點(diǎn)的坐標(biāo)代入即可求出拋物線的解析式.根據(jù)圓和拋物線的對(duì)稱性可知:E點(diǎn)和D點(diǎn)關(guān)于拋物線的對(duì)稱軸x=4對(duì)稱,因此根據(jù)D的坐標(biāo)即可求出E點(diǎn)的坐標(biāo).
②由①可知點(diǎn)E的坐標(biāo)為(8,-6),所以可求出過CE的直線解析式,進(jìn)而求出直線和x軸的交點(diǎn)坐標(biāo)R,當(dāng)S△CEQ=S△CEP則QR=PC,則可求出Q點(diǎn)坐標(biāo);
(3)如果以B、C、D、E為頂點(diǎn)的四邊形組成菱形,那么這個(gè)四邊形的對(duì)角線互相垂直平分,如果設(shè)BC,DE的交點(diǎn)為F,那么BF=CF,可用A點(diǎn)的縱坐標(biāo)即AN的長表示出BF和CF由此可求出A點(diǎn)的縱坐標(biāo),進(jìn)而可在直角三角形OAN中用勾股定理求出m的值.
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、一次函數(shù)的解析式、垂徑定理、勾股定理、菱形的性質(zhì)等重要知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(6,0),(6,8).動(dòng)點(diǎn)M、N分別從O、B同時(shí)出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng).其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)N作NP⊥BC,交AC于P,連接MP.已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.
(1)P點(diǎn)的坐標(biāo)為多少;(用含x的代數(shù)式表示)
(2)試求△MPA面積的最大值,并求此時(shí)x的值;
(3)請(qǐng)你探索:當(dāng)x為何值時(shí),△MPA是一個(gè)等腰三角形?你發(fā)現(xiàn)了幾種情況?寫出你的研究成果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索研究
已知如圖,過O且半徑為5的⊙P交x的正半軸于點(diǎn)M(2m,0)、交y軸的負(fù)半軸于點(diǎn)D,弧OBM與⊙P的弧OAM關(guān)于x軸對(duì)稱,其中A、B、C是過點(diǎn)P且垂直于x軸的直線與兩弧及圓的交點(diǎn).點(diǎn)A到x軸的距離為h,以B為頂點(diǎn)且過D的拋物線交⊙P于點(diǎn)E.
(1)填空:B的坐標(biāo)為
(m,-h)
(m,-h)
,C的坐標(biāo)為
(m,h-10)
(m,h-10)
,D的坐標(biāo)為
(0,2h-10)
(0,2h-10)
;(可含m、h)
(2)當(dāng)m=4時(shí),
①求此拋物線的函數(shù)關(guān)系式并寫出點(diǎn)E的坐標(biāo);
②點(diǎn)Q在y軸上,且S△CEQ=S△CEP,求Q點(diǎn)坐標(biāo).
(3)是否存在實(shí)數(shù)m,使得以B、C、D、E為頂點(diǎn)的四邊形組成菱形?若存在,求m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(6,0),(6,8).動(dòng)點(diǎn)M、N分別從O、B同時(shí)出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng).其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)N作NP⊥BC,交AC于P,連接MP.已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.
(1)P點(diǎn)的坐標(biāo)為多少;(用含x的代數(shù)式表示)
(2)試求△MPA面積的最大值,并求此時(shí)x的值;
(3)請(qǐng)你探索:當(dāng)x為何值時(shí),△MPA是一個(gè)等腰三角形?你發(fā)現(xiàn)了幾種情況?寫出你的研究成果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省廈門市五校聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•涼山州)如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(6,0),(6,8).動(dòng)點(diǎn)M、N分別從O、B同時(shí)出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng).其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)N作NP⊥BC,交AC于P,連接MP.已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.
(1)P點(diǎn)的坐標(biāo)為多少;(用含x的代數(shù)式表示)
(2)試求△MPA面積的最大值,并求此時(shí)x的值;
(3)請(qǐng)你探索:當(dāng)x為何值時(shí),△MPA是一個(gè)等腰三角形?你發(fā)現(xiàn)了幾種情況?寫出你的研究成果.

查看答案和解析>>

同步練習(xí)冊(cè)答案