1
2x-1
1
3
(x+4)
互為倒數(shù),則x=
 
分析:根據(jù)互為倒數(shù)的兩數(shù)之積為1可列出方程,然后求解即可.
解答:解:根據(jù)題意得:
1
2x-1
×
1
3
(x+4)
=1
去分母、去括號(hào)得:x+4=6x-3
移項(xiàng)合并同類項(xiàng)得:5x=7
系數(shù)化為1得:x=
7
5
點(diǎn)評(píng):本題的關(guān)鍵在于根據(jù)題意列出等式,有一定的難度,同學(xué)們要注意讀準(zhǔn)題意.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:點(diǎn)A、B分別在直角坐標(biāo)系的x、y軸的正半軸上,O是坐標(biāo)原點(diǎn),點(diǎn)C在射線AO上,點(diǎn)D在線段OB上,直線AD與線段BC相交于點(diǎn)P,設(shè)
AC
AO
=a,
BD
DO
=b,
CP
PB
=k.
(1)如圖1,當(dāng)a=
1
2
,b=1時(shí),請(qǐng)求出k的值;
(2)當(dāng)a=
1
3
,b=1時(shí)(如圖2),請(qǐng)求出k的值;當(dāng)a=
3
2
,b=
1
5
時(shí),k=
15
2
15
2

(3)根據(jù)以上探索研究,請(qǐng)你解決以下問題:①請(qǐng)直接寫出用含a,b代數(shù)式表示k=
a
b
a
b
;②若點(diǎn)A(8,0),點(diǎn)B(0,6),C(-2,0),直線AD為:y=-
1
2
x+4,則k=
5
2
5
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•達(dá)州)【問題背景】
若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
1
2
x(x
>0),利用函數(shù)的圖象或通過配方均可求得該函數(shù)的最大值.
【提出新問題】
若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(小)值是多少?
【分析問題】
若設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
1
x
)
(x>0),問題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
【解決問題】
借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担
(1)實(shí)踐操作:填寫下表,并用描點(diǎn)法畫出函數(shù)y=2(x+
1
x
)
(x>0)的圖象:
 x  
1
4
 
1
3
 
1
2
 1  2  3  4
 y              
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=
1
1
時(shí),函數(shù)y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理論證:問題背景中提到,通過配方可求二次函數(shù)s=-x2+
1
2
x(x
>0)的最大值,請(qǐng)你嘗試通過配方求函數(shù)y=2(x+
1
x
)
(x>0)的最大(小)值,以證明你的猜想.〔提示:當(dāng)x>0時(shí),x=(
x
)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南漳縣模擬)一個(gè)不透明的口袋中裝有只有顏色不同的2個(gè)白球和3個(gè)黑球,若往口袋中再放入x個(gè)白球和y個(gè)黑球后,從口袋中隨機(jī)摸出一個(gè)黑球的概率為
1
3
,則y與x之間的函數(shù)關(guān)系式為
y=
1
2
x-2
y=
1
2
x-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•武侯區(qū)一模)(1)解不等式組:
6x+15>2(4x+3)
2x-1
3
1
2
x-
2
3
,并指出此不等式組的非正整數(shù)解.
(2)先化簡,再求值:
2x
4-x2
÷(
3x
x-2
-
x
x+2
)
,其中x=tan60°-3.
(3)如圖,在△ABC中,∠C=90°,AC=4,∠CAB的平分線AD=
8
3
3
,求∠B的度數(shù)及邊BC的長.
(4)若關(guān)于x、y二元一次方程組
2x+3y=k-3
x-2y=2k+1
的解中x與y互為相反數(shù),求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案