以線段a、b、c為三邊的三角形是直角三角形的是


  1. A.
    a=5,b=4,c=3
  2. B.
    a=1,b=2,c=3
  3. C.
    a=5,b=6,c=7
  4. D.
    a=2,b=2,c=3
A
分析:根據(jù)勾股定理的逆定理對四個選項進(jìn)行逐一分析.
解答:A、∵32+42=25=52,即b2+c2=a2,∴能構(gòu)成直角三角形,故本選項正確;
B、∵12+22≠32,故不能構(gòu)成直角三角形,故本選項錯誤;
C、∵52+62≠72,故不能構(gòu)成直角三角形,故本選項錯誤;
D、∵22+22≠32,故不能構(gòu)成直角三角形,故本選項錯誤.
故選A.
點評:本題考查的是勾股定理的逆定理,即如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

宏遠(yuǎn)廣告公司要為某企業(yè)的一種產(chǎn)品設(shè)計商標(biāo)圖案,給出了如下幾種初步方案,供繼續(xù)設(shè)計選用(設(shè)圖中圓的半徑均為r)
(1)如圖1,分別以線段O1O2的兩個端點為圓心,以這條線段的長為半徑作出兩個互相交錯的圓的圖案,試求兩圓相交部分的面積;
(2)如圖2,分別以等邊△O1O2O3的三個頂點為圓心,以其邊長為半徑,作出三個兩兩相交的相同的圓,這時,這三個圓相交部分的面積又是多少呢?
(3)如圖3,分別以正方形O1O2O3O4的四個頂點為圓心,以其邊長為半徑,作出四個相同的圓,這時,這四個圓相交部分的面積又是多少呢?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,菱形ABCD(圖1)與菱形EFGH(圖2)的形狀、大小完全相同.且點A、C、E、G在同一直線上,點M是線段AG的中點.

那么菱形EFGH可由菱形ABCD經(jīng)一次圖形變換得到,這次圖形變換可以是軸對稱變換、平移變換和旋轉(zhuǎn)變換.請你具體描述這三種變換.(軸對稱變換已描述)
軸對稱變換:菱形ABCD以線段AG的垂直平分線為對稱軸作軸對稱變換得到菱形EFGH.
平移變換:
旋轉(zhuǎn)變換:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•榮昌縣模擬)如圖已知線段a,b,c.以線段a,b,c為邊做△ABC,并作出到A、B、C三點距離相等的點P.寫出已知,求作,不寫作法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第5章《中心對稱圖形(二)》中考題集(55):5.6 圓與圓的位置關(guān)系(解析版) 題型:解答題

宏遠(yuǎn)廣告公司要為某企業(yè)的一種產(chǎn)品設(shè)計商標(biāo)圖案,給出了如下幾種初步方案,供繼續(xù)設(shè)計選用(設(shè)圖中圓的半徑均為r)
(1)如圖1,分別以線段O1O2的兩個端點為圓心,以這條線段的長為半徑作出兩個互相交錯的圓的圖案,試求兩圓相交部分的面積;
(2)如圖2,分別以等邊△O1O2O3的三個頂點為圓心,以其邊長為半徑,作出三個兩兩相交的相同的圓,這時,這三個圓相交部分的面積又是多少呢?
(3)如圖3,分別以正方形O1O2O3O4的四個頂點為圓心,以其邊長為半徑,作出四個相同的圓,這時,這四個圓相交部分的面積又是多少呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(16)(解析版) 題型:解答題

(2005•黃岡)宏遠(yuǎn)廣告公司要為某企業(yè)的一種產(chǎn)品設(shè)計商標(biāo)圖案,給出了如下幾種初步方案,供繼續(xù)設(shè)計選用(設(shè)圖中圓的半徑均為r)
(1)如圖1,分別以線段O1O2的兩個端點為圓心,以這條線段的長為半徑作出兩個互相交錯的圓的圖案,試求兩圓相交部分的面積;
(2)如圖2,分別以等邊△O1O2O3的三個頂點為圓心,以其邊長為半徑,作出三個兩兩相交的相同的圓,這時,這三個圓相交部分的面積又是多少呢?
(3)如圖3,分別以正方形O1O2O3O4的四個頂點為圓心,以其邊長為半徑,作出四個相同的圓,這時,這四個圓相交部分的面積又是多少呢?

查看答案和解析>>

同步練習(xí)冊答案