(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連接CD,設(shè)BD的長為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.

【答案】分析:(1)解方程x2-5x+4=0,求出兩根,得到OA,OC的長,即可以得到A,C兩點的坐標,已知拋物線的對稱軸是x=1,A,B一定關(guān)于對稱軸對稱,因而B的坐標也可以相應求出.
(2)已知A,B,C三點的坐標,根據(jù)待定系數(shù)法就可以求出函數(shù)的解析式.
(3)已知DE∥BC,則得到△AED∽△ACB,AB,AC的長度可以根據(jù)第一問求出,AD可以用m表示出來,根據(jù)相似三角形的對應邊的比相等,就可以求出EC的長(用m表示).△DEC與△ABC的CE,AC邊上的高的比,就是△AED和△ACB的相似比,因而EC邊上的高也可以用m表示出來,則函數(shù)解析式就可求出.
S是否存在最大值,可以轉(zhuǎn)化為求函數(shù)的最值問題.根據(jù)函數(shù)的性質(zhì)就可以得到.
解答:解:(1)∵OA、OC的長是x2-5x+4=0的根,OA<OC,
∴OA=1,OC=4,
∵點A在x軸的負半軸,點C在y軸的負半軸,
∴A(-1,0)C(0,-4),
∵拋物線y=ax2+bx+c的對稱軸為x=1,
∴由對稱性可得B點坐標為(3,0),
∴A、B、C三點坐標分別是:A(-1,0),B(3,0),C(0,-4);

(2)∵點C(0,-4)在拋物線y=ax2+bx+c圖象上,
∴c=-4,
將A(-1,0),B(3,0)代入y=ax2+bx-4,
,
解之得,
∴所求拋物線解析式為:;

(3)根據(jù)題意,BD=m,則AD=4-m,
在Rt△OBC中,BC==5,
∵DE∥BC,
∴△ADE∽△ABC,
,

過點E作EF⊥AB于點F,則sin∠EDF=sin∠CBA=,

∴EF=DE==4-m,
∴S△CDE=S△ADC-S△ADE=(4-m)×4(4-m)(4-m)
=m2+2m(0<m<4)
∵S=(m-2)2+2,a=<0
∴當m=2時,S有最大值2.
∴點D的坐標為(1,0).
點評:本題綜合運用了待定系數(shù)法求函數(shù)解析式,相似三角形的性質(zhì),以及求函數(shù)的最值.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連接CD,設(shè)BD的長為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前30天沖刺得分專練8:二次函數(shù)(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連接CD,設(shè)BD的長為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省某市新人教版中考數(shù)學模擬試卷(11)(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連接CD,設(shè)BD的長為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省汕尾市陸豐市玉燕中學九年級(下)月考數(shù)學試卷(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連接CD,設(shè)BD的長為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案