(2010•三明)如圖,在△ABC中,點D、E、F分別是邊AB、BC、CA的中點.
(1)求證:四邊形DECF是平行四邊形;
(2)若AC=BC,則四邊形DECF是什么特殊四邊形?請說明理由.

【答案】分析:(1)根據(jù)一組對邊平行且相等的四邊形是平行四邊進行證明;
(2)根據(jù)一組鄰邊相等的平行四邊形是菱形進行證明.
解答:(1)證明:方法一:∵D、E、F分別是邊AB、BC、CA的中點,
∴DE∥AC,DE=AC,CF=AC.(3)分
∴DE∥CF,DE=CF.
∴四邊形DECF是平行四邊形,5分)
方法二:∵D、E、F分別是邊AB、BC、CA的中點,
∴DE∥AC,DF∥BC,(3分)
∴四邊形DECF是平行四邊形.(5分)

(2)解:四邊形DECF是菱形(6分)
理由:∵E、F分別是邊BC、CA的中點,
∴CE=BC,CF=AC,
又∵AC=BC,
∴CE=CF.(8分)
由(1)知,四邊形DECF是平行四邊形,
∴四邊形DECF是菱形.(10分)
點評:考查了平行四邊形和菱形的判定.
形的判別方法是說明一個四邊形為菱形的理論依據(jù),常用三種方法:
①定義;
②四邊相等;
③對角線互相垂直平分.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•三明)如圖①,拋物線經(jīng)過點A(12,0)、B(-4,0)、C(0,-12).頂點為M,過點A的直線y=kx-4交y軸于點N.
(1)求該拋物線的函數(shù)關(guān)系式和對稱軸;
(2)試判斷△AMN的形狀,并說明理由;
(3)將AN所在的直線l向上平移.平移后的直線l與x軸和y軸分別交于點D、E(如圖②).當直線l平移時(包括l與直線AN重合),在拋物線對稱軸上是否存在點P,使得△PDE是以DE為直角邊的等腰直角三角形?若存在,直接寫出所有滿足條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省三明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•三明)如圖①,拋物線經(jīng)過點A(12,0)、B(-4,0)、C(0,-12).頂點為M,過點A的直線y=kx-4交y軸于點N.
(1)求該拋物線的函數(shù)關(guān)系式和對稱軸;
(2)試判斷△AMN的形狀,并說明理由;
(3)將AN所在的直線l向上平移.平移后的直線l與x軸和y軸分別交于點D、E(如圖②).當直線l平移時(包括l與直線AN重合),在拋物線對稱軸上是否存在點P,使得△PDE是以DE為直角邊的等腰直角三角形?若存在,直接寫出所有滿足條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的對稱》(01)(解析版) 題型:選擇題

(2010•三明)如圖,在3×3正方形網(wǎng)格中,已有三個小正方形被涂黑,將剩余的白色小正方形再任意涂黑一個,則所得黑色圖案是軸對稱圖形的概率是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省三明市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•三明)如圖是小玲設(shè)計用手電來測量某古城墻高度的示意圖.在點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)平面鏡反射后,剛好射到古城墻CD的頂端C處.已知AB⊥BD,CD⊥BD.且測得AB=1.4米,BP=2.1米,PD=12米.那么該古城墻CD的高度是    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省三明市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•三明)如圖,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分線DE交AB于點D,交BC于點E,則下列結(jié)論不正確的是( )

A.AE=BE
B.AC=BE
C.CE=DE
D.∠CAE=∠B

查看答案和解析>>

同步練習冊答案