(2010•鎮(zhèn)江)如圖,在△ABC和△ADE中,點E在BC邊上,∠BAC=∠DAE,∠B=∠D,AB=AD.
(1)求證:△ABC≌△ADE;
(2)如果∠AEC=75°,將△ADE繞著點A旋轉(zhuǎn)一個銳角后與△ABC重合,求這個旋轉(zhuǎn)角的大小.

【答案】分析:(1)根據(jù)“ASA”直接判斷兩三角形全等;
(2)由旋轉(zhuǎn)的性質(zhì)可知△ACE為等腰三角形,已知∠AEC=75°,根據(jù)內(nèi)角和定理可求∠CAE,即為旋轉(zhuǎn)角的度數(shù).
解答:(1)證明:∵∠BAC=∠DAE,AB=AD,∠B=∠D,
∴△ABC≌△ADE.

(2)解:∵△ABC≌△ADE,
∴AC與AE是一組對應(yīng)邊,
∴∠CAE為旋轉(zhuǎn)角,
∵AE=AC,∠AEC=75°,
∴∠ACE=∠AEC=75°,
∴∠CAE=180°-75°-75°=30°.
點評:通過已知條件證明三角形全等,發(fā)現(xiàn)兩全等三角形的旋轉(zhuǎn)關(guān)系,根據(jù)旋轉(zhuǎn)的性質(zhì)解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(09)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標(biāo)系xOy中,Rt△OAB和Rt△OCD的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內(nèi),點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當(dāng)點B位置變化時,Rt△OAB的面積恒為
試解決下列問題:
(1)點D坐標(biāo)為( );
(2)設(shè)點B橫坐標(biāo)為t,請把BD長表示成關(guān)于t的函數(shù)關(guān)系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設(shè)CM與AB相交于F,當(dāng)△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(14)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標(biāo)系xOy中,Rt△OAB和Rt△OCD的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內(nèi),點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當(dāng)點B位置變化時,Rt△OAB的面積恒為
試解決下列問題:
(1)點D坐標(biāo)為( );
(2)設(shè)點B橫坐標(biāo)為t,請把BD長表示成關(guān)于t的函數(shù)關(guān)系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設(shè)CM與AB相交于F,當(dāng)△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標(biāo)系xOy中,Rt△OAB和Rt△OCD的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內(nèi),點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當(dāng)點B位置變化時,Rt△OAB的面積恒為
試解決下列問題:
(1)點D坐標(biāo)為( );
(2)設(shè)點B橫坐標(biāo)為t,請把BD長表示成關(guān)于t的函數(shù)關(guān)系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設(shè)CM與AB相交于F,當(dāng)△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標(biāo)系xOy中,Rt△OAB和Rt△OCD的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內(nèi),點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當(dāng)點B位置變化時,Rt△OAB的面積恒為
試解決下列問題:
(1)點D坐標(biāo)為( );
(2)設(shè)點B橫坐標(biāo)為t,請把BD長表示成關(guān)于t的函數(shù)關(guān)系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設(shè)CM與AB相交于F,當(dāng)△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標(biāo)系xOy中,Rt△OAB和Rt△OCD的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內(nèi),點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當(dāng)點B位置變化時,Rt△OAB的面積恒為
試解決下列問題:
(1)點D坐標(biāo)為( );
(2)設(shè)點B橫坐標(biāo)為t,請把BD長表示成關(guān)于t的函數(shù)關(guān)系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設(shè)CM與AB相交于F,當(dāng)△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案