如圖在Rt△OAB中,∠OAB=90°,OA=AB=6.
(1)請(qǐng)你畫出將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°,得到的△OA1B1;
(2)線段OA1的長(zhǎng)度是______,∠AOB1的度數(shù)是______;
(3)連接AA1,求證:四邊形OAA1B1是平行四邊形.

(1)解:△OA1B1如圖所示.

(2)解:根據(jù)旋轉(zhuǎn)的性質(zhì)知,OA1=OA=6.
∵將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°,得到的△OA1B1,
∴∠BOB1=90°.
∵在Rt△OAB中,∠OAB=90°,OA=AB=6,
∴∠BOA=∠OBA=45°,
∴∠AOB1=∠BOB1+∠BOA=90°+45°=135°,即∠AOB1的度數(shù)是135°.
故答案是:6,135°;

(3)證明:根據(jù)旋轉(zhuǎn)的性質(zhì)知,△OA1B1≌△OAB,
則∠OA1B1=∠OAB=90°,A1B1=AB,
∵將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°,得到的△OA1B1,
∴∠A1OA=90°,
∴∠OA1B1=∠A1OA,
∴A1B1∥OA.
又∵OA=AB,
∴A1B1=OA,
∴四邊形OAA1B1是平行四邊形.
分析:(1)根據(jù)旋轉(zhuǎn)中心為點(diǎn)O,旋轉(zhuǎn)方向逆時(shí)針,旋轉(zhuǎn)角度90°得到點(diǎn)A、B的對(duì)應(yīng)點(diǎn)A1,B1,順次連接O、A1、B1即可得到△OA1B1;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)知,旋轉(zhuǎn)圖形的對(duì)應(yīng)邊、對(duì)應(yīng)角都相等;
(3)根據(jù)平行四邊形的判定定理“對(duì)邊平行且相等的四邊形是平行四邊形”進(jìn)行證明.
點(diǎn)評(píng):本題考查了作圖--旋轉(zhuǎn)變換,平行四邊形的判定.旋轉(zhuǎn)作圖有自己獨(dú)特的特點(diǎn),決定圖形位置的因素較多,旋轉(zhuǎn)角度、旋轉(zhuǎn)方向、旋轉(zhuǎn)中心不同,位置就不同,但得到的圖形全等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△OAB中,∠OAB=90°,O為坐標(biāo)原點(diǎn),邊OA在x軸上,OA=AB=1個(gè)單位長(zhǎng)度,把Rt△OAB沿x軸正精英家教網(wǎng)方向平移1個(gè)單位長(zhǎng)度后得△AA1B1
(1)求以A為頂點(diǎn),且經(jīng)過(guò)點(diǎn)B1的拋物線的解析式;
(2)若(1)中的拋物線與OB交于點(diǎn)C,與y軸交于點(diǎn)D,求點(diǎn)D、C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•橋東區(qū)二模)如圖在Rt△OAB中,∠OAB=90°,OA=AB=6.
(1)請(qǐng)你畫出將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°,得到的△OA1B1;
(2)線段OA1的長(zhǎng)度是
6
6
,∠AOB1的度數(shù)是
135°
135°
;
(3)連接AA1,求證:四邊形OAA1B1是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△OAB中,∠OAB=90°,B(4,2).
(1)△OAB向下平移3個(gè)單位后得△O1A1B1,則A1的坐標(biāo)為
(4,-3)
(4,-3)

(2)△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得△OA2B2,則B2的坐標(biāo)為
(2,-4)
(2,-4)
;
(3)在圖中畫出△O1A1B1,△OA2B2,直接寫出它們覆蓋的面積為
9
20
9
20
平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:河南省鄭州市回民中學(xué)2010屆九年級(jí)第三次質(zhì)量檢測(cè)數(shù)學(xué)試題 題型:044

如圖在RT△OAB中,∠OAB=90°,OA=AB=6 cm,將△AOB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△A1OB1

(1)線段OA1的長(zhǎng)是________,∠AOB1________

(2)連結(jié)AA1,求證四邊形OAA1B1是平行四邊形.

(3)求四邊形OAA1B1的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案