精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中,⊙A經過原點O,并且分別與x軸、y軸交于B、C兩點,已知B(8,0),C(0,6),則⊙A的半徑為( )

A.3
B.4
C.5
D.8
【答案】分析:連接BC,由90度的圓周角所對的弦為直徑,得到BC為圓A的直徑,在直角三角形BOC中,由OB與OC的長,利用勾股定理求出BC的長,即可確定出圓A的半徑.
解答:解:連接BC,
∵∠BOC=90°,
∴BC為圓A的直徑,即BC過圓心A,
在Rt△BOC中,OB=8,OC=6,
根據勾股定理得:BC=10,
則圓A的半徑為5.
故選C
點評:此題考查了圓周角定理,坐標與圖形性質,以及勾股定理,熟練掌握圓周角定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案