已知:如圖,BD為⊙O的直徑,BC為弦,A為BC弧中點,AFBC交DB的延長線于點F,AD交BC于點E,AE=2,ED=4.
(1)求證:AF是⊙O的切線;
(2)求AB的長.
(1)證明:連接OA,
∵A是BC弧的中點,
∴OA⊥BC.
∵AFBC,
∴OA⊥AF.
∴AF是⊙O的切線.

(2)∵∠BAE=DAB,∠ABE=∠ADB,
∴△ABE△ADB.
AB
AD
=
AE
AB

∴AB2=AE•AD=12.
∴AB=2
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.連接AD、BC,點M、N、P分別為OA、OD、BC的中點.
①若A、O、C三點在同一直線上,且∠ABO=2α,則
AD
BC
=______(用含有α的式子表示);
②固定△AOB,將△COD繞點O旋轉(zhuǎn),PM最大值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA、PB、DE分別切⊙O于A、B、C,⊙O的半徑為6cm,OP的長為10cm,則△PDE的周長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC為圓O的內(nèi)接三角形,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求證:△ABE△ADB,并求AB的長;
(2)延長DB到F,使BF=BO,連接FA,那么直線FA與⊙O相切嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長為a,AC與BD交于點E,過點E作FGAB,且分別交AD、BC于點F、G.問:以B為圓心,
2
2
a
為半徑的圓與直線AC、FG、DC的位置關(guān)系如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA是⊙O的切線,A為切點,PO交⊙O于點B,PA=8,OB=6,則tan∠APO的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知PA,PB分別切⊙O于點A、B,∠P=60°,PA=8,那么弦AB的長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB、AC分別是⊙O的直徑和弦,點D為劣弧AC上一點,弦ED分別交⊙O于點E,交AB于點H,交AC于點F,過點C的切線交ED的延長線于點P.
(1)若PC=PF,求證:AB⊥ED;
(2)點D在劣弧AC的什么位置時,才能使AD2=DE•DF,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P是半徑為4的⊙O外一點,PA切⊙O于A,PB切⊙O于B,∠APB=60°.
求:夾在劣弧AB及,PB之間的陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案