如圖1,在平面直角坐標(biāo)系中有一個(gè)Rt△OAC,點(diǎn)A(3,4),點(diǎn)C(3,0)將其沿直線AC翻折,翻折后圖形為△BAC.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線0?A?B的方向以每秒2個(gè)單位的速度向B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),在線段BO上以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)△OPQ的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(2)如圖2,固定△OAC,將△ACB繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后得到的三角形為△A′CB′設(shè)A′B′與AC交于點(diǎn)D當(dāng)∠BCB′=∠CAB時(shí),求線段CD的長(zhǎng);
(3)如圖3,在△ACB繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)的過(guò)程中,若設(shè)A′C所在直線與OA所在直線的交點(diǎn)為E,是否存在點(diǎn)E使△ACE為等腰三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.精英家教網(wǎng)
精英家教網(wǎng)
分析:(1)根據(jù)勾股定理和折疊的性質(zhì)易求得OA=AB=5,OB=6,可用t表示出OP、OQ的長(zhǎng),分兩種情況討論:
①點(diǎn)P在線段OA上運(yùn)動(dòng),即0≤t≤2.5,以O(shè)Q為底,OP•sin∠AOC為高,即可得S、t的函數(shù)關(guān)系式;
②點(diǎn)P在線段AB上運(yùn)動(dòng),即2.5<t≤5,以O(shè)Q為底,BP•sin∠ABC為高,即可得S、t的函數(shù)關(guān)系式.
(2)若∠BCB′=∠CAB,那么∠DCB′、∠ABC為等角的余角,而根據(jù)旋轉(zhuǎn)的性質(zhì)知:∠ABC=∠B′,通過(guò)等量代換后可發(fā)現(xiàn)此時(shí)D點(diǎn)是斜邊A′B′的中點(diǎn),即CD=
1
2
A′B′,由此得解.
(3)首先根據(jù)A點(diǎn)坐標(biāo),求出直線OP的解析式,然后設(shè)出點(diǎn)E的坐標(biāo);再根據(jù)A、C的坐標(biāo),分別表示出AE2、CE2的長(zhǎng),然后分三種情況討論:①AE=CE,②AE=AC,③CE=AC;
根據(jù)上述三種情況所得不同等量關(guān)系,即可求得符合條件的E點(diǎn)坐標(biāo).
解答:解:(1)由題意知:OA=AB=5,OC=BC=3,OB=6;
P從O→A→B,所用的總時(shí)間為:(5+5)÷2=5s;Q從B→O所用的總時(shí)間為:6÷1=6;
因此t的取值范圍為:0≤t≤5;
①當(dāng)0≤t≤2.5時(shí),點(diǎn)P在線段OA上;
OP=2t,OQ=OB-BQ=6-t;
∴S=
1
2
×2t×
4
5
×(6-t)=-
4
5
t2+
24
5
t;
②當(dāng)2.5≤t≤5時(shí),點(diǎn)P在線段AB上;
OP=2t,BP=10-2t,OQ=6-t;
∴S=
1
2
×(10-2t)×
4
5
×(6-t)=
4
5
t2-
44
5
t+24;
綜上可知:S=
-
4
5
t2+
24
5
t(0≤t≤2.5)
4
5
t2-
44
5
t+24(2.5≤t≤5)


(2)∵∠BCB′=∠CAB,
∴∠DCB′=∠ABC=90°-∠CAB=90°-∠BCB′,
由旋轉(zhuǎn)的性質(zhì)知:∠ABC=∠B′,即∠DCB′=∠B′;
∴∠A′=∠A′CD=90°-∠DCB′=90°-∠B′,
∴A′D=DB′=CD,即CD=
1
2
A′B′=
1
2
AB=2.5.

(3)由A(3,4),可得直線OA:y=
4
3
x;
設(shè)點(diǎn)E(x,
4
3
x),已知A(3,4),C(3,0);
∴AE2=(x-3)2+(
4
3
x-4)2,CE2=(x-3)2+(
4
3
x)2,AC=4;
①當(dāng)AE=CE時(shí),AE2=CE2,則有:
(x-3)2+(
4
3
x-4)2=(x-3)2+(
4
3
x)2,解得x=
3
2

∴E1
3
2
,2);
②當(dāng)AE=AC時(shí),AE2=AC2=16,則有:
(x-3)2+(
4
3
x-4)2=16,整理得:25x2-150x+81=0,
解得:x=
3
5
,x=
27
5
;
∴E2
3
5
,
4
5
),E3
27
5
,
36
5
);
③當(dāng)CE=AC時(shí),CE2=AC2=16,則有:
(x-3)2+(
4
3
x)2=16,整理得:25x2-54x-63=0,
解得:x=-
21
25
,x=3(舍去);
∴E4(-
21
25
,-
28
25
);
綜上可知:存在符合條件的E點(diǎn):E1
3
2
,2),E2
3
5
4
5
),E3
27
5
,
36
5
),E4(-
21
25
,-
28
25
).
點(diǎn)評(píng):此題是一次函數(shù)的綜合題,涉及到圖形的旋轉(zhuǎn)、圖形面積的求法、等腰三角形的構(gòu)成情況等知識(shí),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫(huà)兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫(huà)成水平,叫x軸,另一條畫(huà)成鉛垂,叫y軸,這樣,我們就說(shuō)在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫(huà)出平移后的△A′B′C′;
(2)請(qǐng)寫(xiě)出平移后點(diǎn)A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點(diǎn)C的坐標(biāo)為(-3,0).
(1)點(diǎn)A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點(diǎn)B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點(diǎn)O為頂點(diǎn)且過(guò)點(diǎn)A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時(shí)間為多少秒時(shí),三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫(xiě)下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).

(3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對(duì)稱問(wèn)題時(shí)發(fā)現(xiàn):

如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.

(1)請(qǐng)?jiān)趫D2中畫(huà)出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說(shuō)明P、、三點(diǎn)共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫(huà)兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫(huà)成水平,叫x軸,另一條畫(huà)成鉛垂,叫y軸,這樣,我們就說(shuō)在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫(huà)出平移后的△A′B′C′;
(2)請(qǐng)寫(xiě)出平移后點(diǎn)A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊(cè)答案