定義:我們把三角形被一邊中線分成的兩個(gè)三角形叫做“友好三角形”.

性質(zhì):如果兩個(gè)三角形是“友好三角形”,那么這兩個(gè)三角形的面積相等.

理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且SACD=SBCD

應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)E在AD上,點(diǎn)F在BC上,AE=BF,AF與BE交于點(diǎn)O.

(1)求證:△AOB和△AOE是“友好三角形”;

(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.

探究:在△ABC中,∠A=30°,AB=4,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請(qǐng)直接寫(xiě)出△ABC的面積.

 

 

【答案】

應(yīng)用:(1)證明見(jiàn)解析

(2)△ABC的面積是2或。

【解析】

試題分析:應(yīng)用:(1)連接EF,根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形,得到四邊形ABFE是平行四邊形,從而根據(jù)平行四邊形的性質(zhì)證得OE=OB,即可證得△AOE和△AOB是友好三角形。

(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點(diǎn),則可以求得△ABE、△ABF的面積,根據(jù)S四邊形CDOF=S矩形ABCD﹣2SABF即可求解。

解:應(yīng)用:(1)證明:如圖,連接EF,

∵四邊形ABCD是矩形,

∴AD∥BC。

∵AE=BF,∴四邊形ABFE是平行四邊形。

∴OE=OB!唷鰽OE和△AOB是友好三角形。

探究:分為兩種情況:

①如圖1,連接A′B,過(guò)B作BM⊥AC于M,

∵SACD=SBCD.∴AD=BD=AB。

∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2。

∵△A′CD與△ABC重合部分的面積等于△ABC面積的

∴SDOC=SABC=SBDC=SADC=SA′DC

∴DO=OB,A′O=CO。∴四邊形A′DCB是平行四邊形。∴BC=A′D=2。

∵AB=4,∠BAC=30°,∴BM=AB=2=BC。

∴C和M重合!唷螦CB=90°。

由勾股定理得:,

∴△ABC的面積是×BC×AC=×2×=。

②如圖2,連接A′B,過(guò)C作CQ⊥A′D于Q,

∵SACD=SBCD,∴AD=BD=AB。

∵沿CD折疊A和A′重合,∴AD=A′D=AB4=2。

∵△A′CD與△ABC重合部分的面積等于△ABC面積的

∴SDOC=SABC=SBDC=SADC=SA′DC,

∴DO=OA′,BO=CO!嗨倪呅蜛′DCB是平行四邊形。

∴BD=A′C=2。

∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,

∴SABC=2SADC=2SA′DC=2××A′D×CQ=2××2×1=2。

綜上所述,△ABC的面積是2或

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•沈陽(yáng))定義:我們把三角形被一邊中線分成的兩個(gè)三角形叫做“友好三角形”.
性質(zhì):如果兩個(gè)三角形是“友好三角形”,那么這兩個(gè)三角形的面積相等.
理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD
應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)E在AD上,點(diǎn)F在BC上,AE=BF,AF與BE交于點(diǎn)O.
(1)求證:△AOB和△AOE是“友好三角形”;
(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.
探究:在△ABC中,∠A=30°,AB=4,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得
到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的
14
,請(qǐng)直接寫(xiě)出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年遼寧省遼陽(yáng)市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044

定義:我們把三角形被一邊中線分成的兩個(gè)三角形叫做“友好三角形”

性質(zhì):如果兩個(gè)三角形是“友好三角形”,那么這兩個(gè)三角形的面積相等,

理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD

應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)E在AD上,點(diǎn)F在BC上,AE=BF,AF與BE交于點(diǎn)O,

(1)求證:△AOB和△AOE是“友好三角形”;

(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積,

探究:在△ABC中,∠A=30°,AB=4,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△CD與△ABC重合部分的面積等于△ABC面積的,請(qǐng)直接寫(xiě)出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年遼寧省沈陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

定義:我們把三角形被一邊中線分成的兩個(gè)三角形叫做“友好三角形”.
性質(zhì):如果兩個(gè)三角形是“友好三角形”,那么這兩個(gè)三角形的面積相等.
理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD
應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)E在AD上,點(diǎn)F在BC上,AE=BF,AF與BE交于點(diǎn)O.
(1)求證:△AOB和△AOE是“友好三角形”;
(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.
探究:在△ABC中,∠A=30°,AB=4,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得
到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請(qǐng)直接寫(xiě)出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定義:我們把三角形被一邊中線分成的兩個(gè)三角形叫做“友好三角形”

  性質(zhì):如果兩個(gè)三角形是“友好三角形”,那么這兩個(gè)三角形的面積相等,

  理解:如圖①,在中,CD是AB邊上的中線,那么是“友好三角形”,并且

  應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)E在AD上,點(diǎn)F在BC上,AE=BF,AF與BE交于點(diǎn)O,

(1)       求證: 是“友好三角形”;

(2)       連接OD,若是“友好三角形”,求四邊形CDOF的面積,

  探究:在中,,AB=4,點(diǎn)D在線段AB上,連接CD,是“友好三角形”,將沿CD所在直線翻折,得到重合部分的面積等于面積的,請(qǐng)直接寫(xiě)出的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案