(2012•盧灣區(qū)一模)計(jì)算:2(
3
4
a
-
1
2
b
)+3
b
=
3
2
a
+2
b
3
2
a
+2
b
分析:根據(jù)平面向量的運(yùn)算法則,首先去括號(hào),然后合并同類項(xiàng)即可求得答案,注意去括號(hào)時(shí)別漏乘.
解答:解:2(
3
4
a
-
1
2
b
)+3
b
=
3
2
a
-
b
+3
b
=
3
2
a
+2
b

故答案為:
3
2
a
+2
b
點(diǎn)評(píng):此題考查了平面向量的運(yùn)算.此題比較簡單,解題的關(guān)鍵是注意運(yùn)算順序.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)在矩形ABCD中,AB=4,BC=3,E是AB邊上一點(diǎn),EF⊥CE交AD于點(diǎn)F,過點(diǎn)E作∠AEH=∠BEC,交射線FD于點(diǎn)H,交射線CD于點(diǎn)N.
(1)如圖a,當(dāng)點(diǎn)H與點(diǎn)F重合時(shí),求BE的長;
(2)如圖b,當(dāng)點(diǎn)H在線段FD上時(shí),設(shè)BE=x,DN=y,求y與x之間的函數(shù)關(guān)系式,并寫出它的定義域;
(3)連接AC,當(dāng)△FHE與△AEC相似時(shí),求線段DN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)若cosA=
3
2
,則∠A的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)若△ABC∽△DEF,頂點(diǎn)A、B、C分別與D、E、F對(duì)應(yīng),且AB:DE=1:4,則這兩個(gè)三角形的面積比為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)對(duì)于函數(shù)y=
1
3
(x-1)2+2
,下列結(jié)論正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)已知矩形的對(duì)角線AC、BD相交于點(diǎn)O,若
BC
=
a
DC
=
b
,則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案