如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與C重合,再展開,折痕EF交AD邊于點(diǎn)E,交BC邊于點(diǎn)F,交AC于點(diǎn)O,分別連接AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)過E點(diǎn)作AD的垂線EP交AC于點(diǎn)P,求證:2AE2=AC•AP;
(3)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長.

【答案】分析:(1)求出OA=OC,∠AOE=∠COF=90°,∠EAO=∠FCO,證△AOE≌△COF,推出OE=OF即可;
(2)證△AOE∽△AEP,得出比例式,即可得出答案;
(3)設(shè)AB=xcm,BF=ycm,根據(jù)菱形的性質(zhì)得出AF=AE=10cm,根據(jù)勾股定理求出x2+y2=100,推出(x+y)2-2xy=100①,根據(jù)三角形的面積公式求出xy=24.即xy=48 ②.即可求出x+y=14的值,代入x+y+AF求出即可.
解答:(1)證明:當(dāng)頂點(diǎn)A與C重合時(shí),折痕EF垂直平分AC,
∴OA=OC,∠AOE=∠COF=90°,
∵在矩形ABCD中,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中

∴△AOE≌△COF(AAS),
∴OE=OF,
∵OA=OC,
∴四邊形AFCE是平行四邊形,
∵EF⊥AC,
∴平行四邊形AFCE是菱形.

(2)證明:∵∠AEP=∠AOE=90°,∠EAO=∠EAP,
∴△AOE∽△AEP,
=,
即AE2=AO•AP,
∵AO=AC,
∴AE2=AC•AP,
∴2AE2=AC•AP.

(3)解:設(shè)AB=xcm,BF=ycm.
∵由(1)四邊形AFCE是菱形,
∴AF=AE=10cm.
∵∠B=90°,
∴x2+y2=100.
∴(x+y)2-2xy=100①.
∵△ABF的面積為24cm2,
xy=24.即xy=48 ②.
由①、②得(x+y)2=196.
∴x+y=14或x+y=-14(不合題意,舍去).
∴△ABF的周長為:x+y+AF=14+10=24(cm).
點(diǎn)評(píng):本題綜合考查了相似三角形的性質(zhì)和判定,勾股定理,三角形的面積,全等三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定,菱形的性質(zhì)和判定等知識(shí)點(diǎn)的應(yīng)用,題目綜合性比較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:中華題王 數(shù)學(xué) 八年級(jí)上 (人教版) 人教版 題型:059

(如圖所示)取一張矩形的紙進(jìn)行折疊,具體操作過程如下:第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1);第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為,得Rt△,如圖(2);第三步:沿線折疊得折痕EF,如圖(3).利用展開圖(4)探究:

(1)△AEF是什么三角形?證明你的結(jié)論;

(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年浙江杭州翠苑中學(xué)九年級(jí)上學(xué)期10月質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,矩形ABCD為一本書,AB=12π,AD=2,當(dāng)把書卷起時(shí)大致如圖所示的半圓狀(每張紙都是以O(shè)為圓心的同心圓的弧),如第一張紙AB對(duì)應(yīng)為,最后一張紙CD對(duì)應(yīng)為為半圓),

(1)連結(jié)OB,求鈍角∠AOB=          ;

(2)如果該書共有100張紙,求第40張紙對(duì)應(yīng)的弧超出半圓部分的長.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD為一本書,AB=12π,AD=2,當(dāng)把書卷起時(shí)大致如圖所示的半圓狀(每張紙都是以O(shè)為圓心的同心圓的弧),如第一張紙AB對(duì)應(yīng)為弧AB,最后一張紙CD對(duì)應(yīng)為弧CD(CD為半圓),

(1)、連結(jié)OB,求鈍角∠AOB

(2)、如果該書共有100張紙,求第40張紙對(duì)應(yīng)的弧超出半圓部分的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD為一本書,AB=12π,AD=2,當(dāng)把書卷起時(shí)大致如圖所示的半圓狀(每張紙都是以O(shè)為圓心的同心圓的弧),如第一張紙AB對(duì)應(yīng)為,最后一張紙CD對(duì)應(yīng)為為半圓),(1)、連結(jié)OB,求鈍角∠AOB=          ;

(2)、如果該書共有100張紙,求第40張紙對(duì)應(yīng)的弧超出半圓部分的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD為一本書,AB=12π,AD=2,當(dāng)把書卷起時(shí)大致如圖所示的半圓狀(每張紙都是以O(shè)為圓心的同心圓的弧),如第一張紙AB對(duì)應(yīng)為弧AB,最后一張紙CD對(duì)應(yīng)為弧CD(CD為半圓),

(1)、連結(jié)OB,求鈍角∠AOB

(2)、如果該書共有100張紙,求第40張紙對(duì)應(yīng)的弧超出半圓部分的長。

查看答案和解析>>

同步練習(xí)冊(cè)答案