【題目】長為1,寬為a的矩形紙片(),如圖那樣折一下,剪下一個邊長等于矩形寬度的正方形(稱為第一次操作);再把剩下的矩形如圖那樣折一下,剪下一個邊長等于此時矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.若在第n此操作后,剩下的矩形為正方形,則操作終止.當n=3時,a的值為

【答案】

【解析】

試題分析:根據(jù)操作步驟,可知每一次操作時所得正方形的邊長都等于原矩形的寬.所以首先需要判斷矩形相鄰的兩邊中,哪一條邊是矩形的寬.當<a<1時,矩形的長為1,寬為a,所以第一次操作時所得正方形的邊長為a,剩下的矩形相鄰的兩邊分別為1﹣a,a.由1﹣a<a可知,第二次操作時所得正方形的邊長為1﹣a,剩下的矩形相鄰的兩邊分別為1﹣a,a﹣(1﹣a)=2a﹣1.由于(1﹣a)﹣(2a﹣1)=2﹣3a,所以(1﹣a)與(2a﹣1)的大小關(guān)系不能確定,需要分情況進行討論.又因為可以進行三次操作,故分兩種情況:①1﹣a>2a﹣1;②1﹣a<2a﹣1.對于每一種情況,分別求出操作后剩下的矩形的兩邊,根據(jù)剩下的矩形為正方形,列出方程,求出a的值.

解:由題意,可知當<a<1時,第一次操作后剩下的矩形的長為a,寬為1﹣a,所以第二次操作時正方形的邊長為1﹣a,第二次操作以后剩下的矩形的兩邊分別為1﹣a,2a﹣1.此時,分兩種情況:

①如果1﹣a>2a﹣1,即a<,那么第三次操作時正方形的邊長為2a﹣1.

經(jīng)過第三次操作后所得的矩形是正方形,

矩形的寬等于1﹣a,

即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=

②如果1﹣a<2a﹣1,即a>,那么第三次操作時正方形的邊長為1﹣a.

則1﹣a=(2a﹣1)﹣(1﹣a),解得a=

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:等腰三角形兩邊長分別為9cm5cm,則周長是( )

A. 19cm B. 23cm C. 19cm23cm D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCADE中,AB=AC,AD=AE,BAC=DAE=90°

當點DAC上時,如圖(1),線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?直接寫出你猜想的結(jié)論;

將圖(1)中的ADE的位置改變一下,如圖(2),使BAD=CAE,其他條件不變,則線段BD,CE又有怎樣的數(shù)量關(guān)系和位置關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知y=y1+y2,y1與x成正比例,y2與x成反比例,并且當x=1時y=4;當x=3時,y=5.求當x=4時,y的值.

解:y1與x成正比例,y2與x成反比例,可以設(shè)y1=kx,y2=

y=y1+y2,

y=kx+

把x=1,y=4代入上式,解得k=2.

y=2x+

當x=4時,y=2×4+=8

閱讀上述解答過程,其過程是否正確?若不正確,請說明理由,并給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知|x|=4,|y|=2,且xy0,則x﹣y的值等于__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛客車從甲地開往乙地,一輛轎車從乙地開往甲地,兩車同時出發(fā),兩車行駛x小時后,記客車離甲地的距離為y1千米,轎車離甲地的距離為y2千米,y1、y2關(guān)于x的函數(shù)圖象如圖.

1)根據(jù)圖象,直接寫出y1、y2關(guān)于x的函數(shù)關(guān)系式;

2)當兩車相遇時,求此時客車行駛的時間;

3)兩車相距200千米時,求客車行駛的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形紙片內(nèi)有100個點,連同三角形的頂點共103個點,其中任意三點都不共線.現(xiàn)以這些點為頂點作三角形,并把紙片剪成小三角形,這樣的小三角形的個數(shù)是(   )

A. 299 B. 201 C. 205 D. 207

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=﹣2x+2的圖象.

1)求AB、P三點的坐標;

2)求四邊形PQOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下四個命題正確的是(

A.任意三點可以確定一個圓

B.菱形對角線相等

C.直角三角形斜邊上的中線等于斜邊的一半

D.平行四邊形的四條邊相等

查看答案和解析>>

同步練習冊答案