下列計算正確的是( )
A.(-1)+(-6)=+7 B.(-3)-(-4)=-7
C.(-4)×(-3)=12 D.(-3)÷2=-1
科目:初中數(shù)學(xué) 來源: 題型:
數(shù)學(xué)課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說明理由. |
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論
當(dāng)點E為AB的中點時,如圖1,確定線段AE與DB的大小關(guān)系.請你直接寫出結(jié)論:AE DB(填“>”,“<”或“=”).
圖1 圖2
(第27題)
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”)
理由如下:如圖2,過點E作EF∥BC,交AC于點F,(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(畫出草圖,寫出簡要過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,邊長為4的正方形ABCD中,點E在AB邊上(不與點A,B重合),點F在BC邊上(不與點B,C重合).
第一次操作:將線段EF繞點F順時針旋轉(zhuǎn),當(dāng)點E落在正方形上時,記為點G;
第二次操作:將線段FG繞點G順時針旋轉(zhuǎn),當(dāng)點F落在正方形上時,記為點H;依次操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為 ,
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請判斷四邊形EFGH的形狀為 ,此時AE與BF的數(shù)量關(guān)系是 ;
②以①中的結(jié)論為前提,設(shè)AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
用10米長的鋁合金做成一個長方形的窗框(如圖),設(shè)長方形窗框的橫條長度為米,則長方形窗框的面積為( )
A.平方米 B.平方米
C.平方米 D.平方米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列說法正確的是 ( )
①試驗條件不會影響某事件出現(xiàn)的頻率;
②在相同的條件下試驗次數(shù)越多,就越有可能得到較精確的估計值,但各人所得的值不一定相同;
③如果一枚骰子的質(zhì)量分布均勻,那么拋擲后每個點數(shù)出現(xiàn)的機會均等;
④拋擲兩枚質(zhì)量分布均勻的相同的硬幣,出現(xiàn)“兩個正面”、“兩個反面”、“一正一反”的機會相同.
A.①② B.②③ C.③④ D.①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com