【題目】鐵嶺市某商貿(mào)公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量y(千克)與每千克降價x(元)(0<x<20)之間滿足一次函數(shù)關系,其圖象如圖所示:
(1)求y與x之間的函數(shù)關系式;
(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應降價多少元?
(3)該干果每千克降價多少元時,商貿(mào)公司獲利最大?最大利潤是多少元?
【答案】(1)y=10x+100;(2)這種干果每千克應降價9元;(3)該干果每千克降價5元時,商貿(mào)公司獲利最大,最大利潤是2250元.
【解析】
(1)由待定系數(shù)法即可得到函數(shù)的解析式;
(2)根據(jù)銷售量×每千克利潤=總利潤列出方程求解即可;
(3)根據(jù)銷售量×每千克利潤=總利潤列出函數(shù)解析式求解即可.
(1)設y與x之間的函數(shù)關系式為:y=kx+b,
把(2,120)和(4,140)代入得,,
解得:,
∴y與x之間的函數(shù)關系式為:y=10x+100;
(2)根據(jù)題意得,(60﹣40﹣x)(10x+100)=2090,
解得:x=1或x=9,
∵為了讓顧客得到更大的實惠,
∴x=9,
答:這種干果每千克應降價9元;
(3)該干果每千克降價x元,商貿(mào)公司獲得利潤是w元,
根據(jù)題意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,
∴w=﹣10(x﹣5)2+2250,
∵a=-10,∴當x=5時,
故該干果每千克降價5元時,商貿(mào)公司獲利最大,最大利潤是2250元.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC內(nèi)接于⊙O,AT切⊙O于點A,AB=BC,且AT∥BC.
(1)如圖1,求證:△ABC是等邊三角形;
(2)如圖2,點M在射線AT上,連接CM交⊙O于點D,連接BD交AC于點E,AF∥CM交BC于點F,求證:AE=CF;
(3)如圖3,在(2)的條件下,延長BA、CM交于點G,若BD=40,CD=25,求AG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三輛汽車經(jīng)過某收費站下高速時,在2個收費通道A,B中,可隨機選擇其中的一個通過.
(1)三輛汽車經(jīng)過此收費站時,都選擇A通道通過的概率是 ;
(2)求三輛汽車經(jīng)過此收費站時,至少有兩輛汽車選擇B通道通過的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,對稱軸是直線x=﹣1,有以下結(jié)論:①abc>0;②4ac<b2;③2a﹣b=0;④a﹣b+c>0;⑤9a﹣3b+c>0.其中正確的結(jié)論有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=2,AC=2,點D是BC的中點,點E是邊AB上一動點,沿DE所在直線把△BDE翻折到△B′DE的位置,B′D交AB于點F.若△AB′F為直角三角形,則AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(發(fā)現(xiàn)問題)愛好數(shù)學的小明在做作業(yè)時碰到這樣的一道題目:
如圖①,點O為坐標原點,⊙O的半徑為1,點A(2,0).動點B在⊙O上,連結(jié)AB,作等邊△ABC(A,B,C為順時針順序),求OC的最大值
(解決問題)小明經(jīng)過多次的嘗試與探索,終于得到解題思路:在圖①中,連接OB,以OB為邊在OB的左側(cè)作等邊三角形BOE,連接AE.
(1)請你找出圖中與OC相等的線段,并說明理由;
(2)求線段OC的最大值.
(靈活運用)
(3)如圖②,在平面直角坐標系中,點A的坐標為(2,0),點B的坐標為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,求線段AM長的最大值及此時點P的坐標.
(遷移拓展)
(4)如圖③,BC=4,點D是以BC為直徑的半圓上不同于B、C的一個動點,以BD為邊作等邊△ABD,請直接寫出AC的最值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A1、A3、A5…在反比例函數(shù)y=(x>0)的圖象上,點A2、A4、A6……在反比例函數(shù)y=-(x>0)的圖象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,則An(n為正整數(shù))的縱坐標為________________________________.(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,點G為AC中點,連結(jié)BG,CE⊥BG于F,交AB于E,連接GE,點H為AB中點,連接FH.以下結(jié)論:(1)∠ACE=∠ABG;(2)∠AGE=∠CGB:(3)若AB=10,則BF=4;(4)FH平分∠BFE;(5)S△BGC=3S△CGE.其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com