【題目】某市移動通訊公司開設(shè)了兩種通訊業(yè)務(wù),A類是固定用戶:先繳50元月租費,然后每通話1分鐘再付話費0.4元;B類是“神州行”用戶:使用者不繳月租費,每通話1分鐘付話費0.6元(這里均指市內(nèi)通話)。如果一個月內(nèi)通話時間為x分鐘,分別設(shè)A類和B類兩種通訊方式的費用為y元和y元,
(1)寫出y、y與x之間的函數(shù)關(guān)系式。
(2)一個月內(nèi)通話多少分鐘,用戶選擇A類合算?B類呢?
(3)若某人預(yù)計使用話費150元,他應(yīng)選擇哪種方式合算?
【答案】(1)y=0.4x+50, y=0.6x;(2)x250分鐘,用戶選擇A類不吃虧;當一個月內(nèi)通話x250分鐘,用戶選擇B類不吃虧;(3)選擇A. B兩種方式都同樣合算.
【解析】
(1)根據(jù):固定使用者先繳50元月基礎(chǔ)費,然后每通話1分鐘,再付電話費0.4元;“神州行”不繳月基礎(chǔ)費,每通話1分鐘,付話費0.6元,可將通訊費用和通話時間的函數(shù)關(guān)系式求出;
(2)根據(jù)話費,可將兩種通訊業(yè)務(wù)的通話時間求出,然后進行比較,時間較長的通訊方式較為合算,
(3)根據(jù)圖象可以看出預(yù)計使用話費150元,應(yīng)選擇哪種方式合算.
(1) y、y與x之間的函數(shù)關(guān)系式分別為:y=0.4x+50, y=0.6x;
(2)x250分鐘,用戶選擇A類不吃虧
當一個月內(nèi)通話x250分鐘,用戶選擇B類不吃虧;
(3)如圖可知若某人預(yù)計使用話費150元,
故他應(yīng)選擇A. B兩種方式都同樣合算.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件.已知生產(chǎn)一件A種產(chǎn)品需用甲種原料9千克、乙種原料3千克,可獲利潤700元;生產(chǎn)一件B種產(chǎn)品需用甲種原料4千克、乙種原料10千克,可獲利潤1200元。設(shè)生產(chǎn)A種產(chǎn)品的生產(chǎn)件數(shù)為x, A、B兩種產(chǎn)品所獲總利潤為y (元)
(1)試寫出y與x之間的函數(shù)關(guān)系式;
(2)求出自變量x的取值范圍;
(3)利用函數(shù)的性質(zhì)說明哪種生產(chǎn)方案獲總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點O為正方形ABCD 的中心,E為AB 邊上一點,F為BC邊上一點,△EBF的周長等于 BC 的長.
(1)求∠EOF 的度數(shù).
(2)連接 OA、OC(如圖2).求證:△AOE∽△CFO.
(3)若OE=OF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD,∠A=60°,AB=6,點E,F(xiàn)分別是AB,BC邊上沿某一方向運動的點,且DE=DF,當點E從A運動到B時,線段EF的中點O運動的路程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
垂直于同一直線的兩條直線互相平行;的平方根是;若一個角的兩邊與另一個角的兩邊互相垂直,且其中一個角是45°,則另一個角為45°或135°;④若是的整數(shù)部分,是不等式的最大整數(shù)解,則關(guān)于,方程的自然數(shù)解共有3對;⑤在平面直角坐標系中,點A、B的坐標分別為(2,0),(0,1),將線段AB平移至,的位置,則.其中真命題的個數(shù)是( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)部某一玩具價格如圖所示,現(xiàn)有甲、乙兩個商店,計劃在“六一”兒童節(jié)前到該批發(fā)部購買此類玩具.兩商店所需玩具總數(shù)為120個,乙商店所需數(shù)量不超過50個,設(shè)甲商店購買個.如果甲、乙兩商店分別購買玩具,兩商店需付款總和為y元.
(1)求y關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)若甲商店購買不超過100個,請說明甲、乙兩商店聯(lián)合購買比分別購買最多可節(jié)約多少錢;
(3)“六一”兒童節(jié)之后,該批發(fā)部對此玩具價格作了如下調(diào)整:數(shù)量不超過100個時,價格不變;數(shù)量超過100個時,每個玩具降價a元.在(2)的條件下,若甲、乙兩商店“六一”兒童節(jié)之后去批發(fā)玩具,最多可節(jié)約2800元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=-x2 +bx+c交y軸于點C(0,2),經(jīng)過點Q(2,2).直線y=x+4分別交x軸、y軸于點B、A.
(1)直接填寫拋物線的解析式________;
(2)如圖1,點P為拋物線上一動點(不與點C重合),PO交拋物線于M,PC交AB于N,連MN.
求證:MN∥y軸;
(3)如圖,2,過點A的直線交拋物線于D、E,QD、QE分別交y軸于G、H.求證:CG CH為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC、AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D.若AC=9,AB=15,且S△ABC=54,則△ABD的面積是( 。
A. B. C. 45D. 35
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com