分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.已知∠ACB=90°、∠BAC=30°,EF⊥AB,垂足為F,連接DF、CF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形;
(3)找出圖中除△ACD、△ABE以外的等邊三角形,并說明理由.
(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因?yàn)椤鰽BE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可證明△AFE≌△BCA,再根據(jù)全等三角形的性質(zhì)即可證明AC=EF;(2)根據(jù)(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據(jù)平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形;(3)△CBF為等邊三角形
【解析】
試題分析:(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因?yàn)椤鰽BE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可證明△AFE≌△BCA,再根據(jù)全等三角形的性質(zhì)即可證明AC=EF;
(2)根據(jù)(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據(jù)平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形;
(3)先證得BC=BF,∠CBF=60°,即可證得△CBF為等邊三角形.
(1)∵Rt△ABC中,∠BAC=30°,
∴AB=2BC,
又∵△ABE是等邊三角形,EF⊥AB,
∴AB=2AF
∴AF=CB,
∴△AFE≌△BCA(HL),
∴AC=EF;
(2)由(1)知道AC=EF,
而△ACD是等邊三角形,
∴∠DAC=60°
∴EF=AC=AD,且AD⊥AB,
而EF⊥AB,
∴EF∥AD,
∴四邊形ADFE是平行四邊形;
(3)由(1)(2)得BC=BF,∠CBF=60°
∴△CBF為等邊三角形.
考點(diǎn):等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì)
點(diǎn)評:全等三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點(diǎn),一般難度不大,需熟練掌握.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com